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FIGURE 12.2

Decomposition of the shortest-route problem into stages
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Example 12.2-1
The backward recursive equation for Example 12.2-1 is

flxa=T7)=0
filxi) = min {d(x. Xi01) + fior(x) )i = 1,2,3

routes X x

The order of computations is f; — f, — f,.
Stage 3. Node 7 (x; = 7) is connected to nodes 5 and 6 (x3 = 5 and 6) with exactly one route
each. The following table summarizes stage 3 computations:

d(xi. xy) Optimum solution
1 xy=17 fi(x3) x5
S 9 9 7
6 6 6 7

Stage 2. Route (2, 6) does not exist. Given f3(x3) from stage 3. we can compare the feasible

alternatives as the following table shows:

d(x2.x3) + f3(x3) Optimum solution

% X3 =35 x3=6 fr(xs) X3
2 12+9=21 - 21 S
3 8§+9=17 9+6=15 15 6
E 7+9=16 13+6=19 16 5

The optimum solution of stage 2 reads as folJows: For cities 2 and 4. the shortest routes pass
through city 5, and for city 3. the shortest route passes through city 6.
Stage 1. From node 1, we have three alternative routes: (1.2), (1,3). and (1,4). Using f>(x,)

from stage 2, we get

d(xy, x5) + fir(x,) Optimum solution

Xy =2 Hn=3 n=4 filxy) o

X

1 7+ 21 =28 8+ 15=23 S5+ 16 =21 21 <

Stage | solution links city | to city 4. Next, stage 2 solution links city 4 to city 5. Finally,
stage 3 solution connects city 5 to city 7. The optimum route is | —4 — 5 — 7. and the associ-

ated distance is 21 miles.
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Because the unit weight w; and the maximum weight W are integers, the state x; assumes
integer values only.

Stage 3. The exact weight to be allocated to stage 3 (item 3) is not known in advance but can
assume one of the values 0,1, ...and 4 (because W = 4 tons and w; = 1 ton). A value of m3

The definition of the state can be multidimensional. For example, the volume of the knapsack may pose another
restriction. In general, a multidimensional state implies more complex stage calculations. See Section 12.4.

is feasible only if wsm3 = x5 Thus, all the infeasible values (with wym; > x3) are excluded. The
revenue for item 3 is 14m5. Thus, the recursive equation for stage 3 is

The following tableau summarizes the computations for stage 3:

14m; Optimum solution
X3 my=0 ma=1 my=2 my=3 m=4 f3(x3) ms
0 0 - - - - 0 0
1 0 14 = — = 14 1
2 0 14 28 - — 28 2
3 0 14 28 42 - 42 3
4 0 14 28 42 56 56 -

Stage 2. max {m-} = HJ = l.orms = 0,1, fo(x5) = max {47m, + f3(x; — 3m,)}

m3=0, 1

47m> + fa(x; — 3m,) Optimum solution
X5 my =0 my =1 fr(x2) m’
0 0+ 0= 0 o 0 0
1 0+14=14 = 14 0
2 0+28=28 - 28 0
3 0+42=42 47+ 0=47 47 1
4 0+ 56 =56 47 + 14 = 61 61 1

Stage 1. max {m) =[3]=20rm =0.1.2.fi(x) = max _{3lm; + fi(x; = 2my)}
my=0,1.2

3lmy + fr(x; — 2my) Optimum solution
X my; =0 my =1 my =2 filxy) my
0 0+ 0= 0 — - 0 0
1 0+ 14=14 — — 14 0
2 0+ 28 =28 31+ 0=31 — 31 1
3 0+47=47 31+ 14=45 - 47 0
4 0+ 61 =61 31 + 28 =59 62 +0=62 62 2

The optimum solution is determined in the following manner: Given W = 4 tons. from
stage 1, x; = 4 gives the optimum alternative m; = 2—meaning that 2 units of item 1 will be
loaded on the vessel. This allocation leaves x, = x; — 2m> = 4 — 2 X 2 = 0 for stages 2 and 3.
From stage 2, x» = 0 yields m5 = 0, which leaves x3 = x, —3m, = 0 — 3 X 0 = 0 units for
stage 3. Next, from stage 3. x; = 0 gives m3 = 0. Thus. the complete optimal solution is mj = 2.
m5 = 0,and m3 = 0.The associated return is f(4) = $62.000.
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Stage 4.

K R Optimum solution
t r(t) + s(t + 1) = c(z) r(0) + s(r) + s(1) — c(0) — I fa(t)  Decision
1 190+ 60 - .6 =784 20+ 80 +80—.2-100=798 79.8 R
2 185 +50 - 1.2 = 67.3 20 + 60 + 80 — .2 — 100 = 59.8 67.3 K
3 172 + 30 - 1.5 = 457 20 + 50 + 80 — .2 — 100 = 49.8 49.8 R
6 (Must replace) 20+ 5+80—.2—-100= 48 4.8 R
Stage 3.
K R Optimum solution
t (1) = c(t) + fult + 1) r(0) + s(t) — c(0) = I + fy(1) fir)  Decision
| 190 - .6 + 67.3 = 85.7 20 +80 — .2 — 100 + 79.8 = 79.6 85.7 K
2 185 — 1.2 + 49.8 = 67.1 20 + 60 — .2 — 100 + 79.8 = 59.6 67.1 K
5 140 - 18 + 48 =170 20+ 10—-.2-100 + 798 = 96 17.0 R
Stage 2.
K R Optimum solution
t r(t) = c(t) + fa(t + 1) R(0) + s(z) — c(0) — I + fz(1) f»(t)  Decision
1 190 - .6 + 67.1 = 855 20 + 80 — .2 — 100 + 85.7 = 855 855 KorR
) 15.5 - 1.7 + 17.0 = 30.8 20 +30 - .2 — 100 + 85.7 = 355 355 R
Stage 1.

K R Optimum solution
! r(t) —c(t) + fot + 1) R(0) + s(t) — c(0) — I + fo(1) filz)  Decision
3 172 — 1.5 + 355 = 51.2 20+ 50 — .2 — 100 + 85.5 = 55.3 55.3 R

Figure 12.7 summarizes the optimal solution. At the start of year 1, given ¢ = 3. the optimal
decision is to replace the machine. Thus, the new machine will be 1 year old at the start of year
and ¢t = 1 at the start of year 2 calls for either keeping or replacing the machine. If it is replaced
the new machine will be 1 year old at the start of year 3: otherwise, the kept machine will be
2 years old. The process is continued in this manner until year 4 is reached. ]

The alternative optimal policies starting in year 1 are (R, K, K. R) and (R. R. K. K). The total

cost is $55,300.

FIGURE 12.7
~Solution of Example 12.3-3
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