9 Harvesting of
* Animal Populations (. 764)

Sustainable harvesting of animal
populations requires knowledge of
the demographics of the population.
To maximize the yield of a periodic
harvest, different sustainable har-
vesting strategies can be compared
through matrix techniques that
describe the population’s growth
dynamics.
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11.20 A Least-
Squares Model for
Human Hearing (p. 773)

The inner ear contains a

-structure with thousands

of hairlike sensory recep-
tors. These receptors,
driven by the vibrations of
the eardrum, respond to
different frequencies
according to their locations
and produce electrical
impulses that travel to the

brain through the auditory

nerve, In this way the
inner ear acts as a signal
processor that decomposes
a complicated sound wave
into a spectrum of differ-
ent frequencies.

1.1 INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS

LINEAR
EQUATIONS

The study of systems of linéar equations and their solutions is one of the major topics
in linear algebra. In this section we shall introduce some basic terminology and discuss
a method for solving such systems.

A line in the xy-plane can be represented algebraically by an equation of the form
ax+a,y=5
An equation of this kind is called 2 linear equation in the variables x and y. More

generally, we define a linear equation in the n vatiables x,, x,, . . ., x, to be one that

can be expressed in the form
ax tax,t+- - +ax, =h

nen

whete @, ¢4, ..., a,, and b are real constants, The variables in a linear equation are
sometimes called the urhnowns. '
Example 1  The following are linear equations:
x+3y=7
y=4+3z+1

X, = 2% —3xg -ty ="7
n+xnt+oo-+x,=1
Observe that a linear equation does not involve any products or roots of variables. All
variables occur only to the first power and do not appear as arguments for trigonometric,
logarithmic, or exponential functions. The following are not linear equations:
x+3y?=7- 3x+2y—zHtxz=4

y—sinx=0 VX A+ 2%, =1
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LINEAR SYSTEMS

A solution of a linear equation a,x, + a,x, + -+ +a,x, = b is a sequence of

n numbers sy, 5, . . . , 5, such that the equation is satisfied when we substitute x; = 5/,

Xy =8y, ..., %, =8, The set of all solutions of the equation is called its solution set
ot sometimes the general selution of the equation.

Example 2 Find the solution set of

@) dx—2y=1  (b) x,— 4%, + Tx; =5

Solution {a). To find soluti(')ns of (a), we can assign an arbitrary value to x and solve
for y, or choose an arbitrary value for y and solve for x. If we follow the first approach

and assign x an arbitrary value ¢, we obtain
x=t y=2t—3%

These formulas descnbe the solution set in terms of the arbitrary parameter ¢, Particular

numerical solutions can be obtained by substitutmg spec1ﬁc values for ¢. For example,

t=3 vyields the solution x =3, y=34; and ¢= —%} yields the solution x = —3,

a
y e

=gt+4  y=t

Although these formulas are different from those obtained above, they yield the same
solution set as ¢ varies over all possible real nhmbers. For example, the previous for-
mulas gave the solution x = 3, y = 4 when ¢ = 3, while the formulas immediately above

yield that solution when ¢ = 3.

Solution (b). To find the solution set of (b} we can assign arbitrary values to -any two
variables and solve for the third variable. In particular, if we assign arbitrary values s
and f to x, and x,, respectively, and solve for x;, we obtain

X =5+4ds—Tt, X, =35, xy={

A finite set of linear equations in the variables x,, x,, . . . , x,, is called a system of linear
equations or 2 linear system. A sequence of numbers s,, s, . . ., 5, is called a solution
of the system if x; =8, X, =8y, ..., X, =S5, is a solution of every equation in the

systermn, For exarnple, the system

4x) — Xy +3x3 = —1

3x;+x + 9= —4
has the solution x, == 1, x, = 2, x; = —1 since these values satisfy both equationé.
However, x; = 1, x, = 8, x; = 1 is not a solution since these values satisfy only the

first of the two equations in the system.
Not all systems of linear equations have solutions. For example, if we mulnply

the second equation of the system
x+ y=4
2x+2y=6
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by £, it becomes evident that there are no solutions since the resulting equivalent system
g
x+y=4
x+y=3

has contradictory equations,
A system of equations that has no solutions is said to be inconsistent; if there is

at least one solution of the system, it is called consistent. To illustrate the possibilities
that can occur in solving systems of linear equations, consider a general system of two
linear equations in the unknowns x and y: :

ax + by =o¢, {a1, b, not both zero)
aox + by = oy {az, by not both zero)
The graphs of these equations are lines; call them /; and /,. Since a point (x, y} les on

a line if and only if the numbers x and y satisfy the equation of the line, the solutions
of the system of equations correspond to pomts of intersection of {, and /,. There are

three possibilities (Figure 1):

¢ The lines /, and /, may be parallel, in which case there is no intersection and

consequently no splution to the system.
® The lines [, and [, may intersect at only one point, in which case the system has

exactly one solution.
‘e The lines /; and [, may coincide, in which case there are infinitely many points
of intersection and consequently infinitely many solutions to the system.

Although we have considered only two equations with two unknowns here, we will -
show later that the same three possibilities hold for arbitrary linear systems:

Every system of linear equations has either no solutions, exactly one solution, or
infinitely many solutions,

i and Iy
i

¥y . AY JL/:'/,

; A A
(a) () : (c)
{No solution | | One solution | Infinitely many solutions
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An arbitrary system of m linear equations in 7 unknowns can be written as

ay Xy tapx, o Fayx, = b

Ay Xy + apEy ot ayx, = by

QX+ WXy + 00t G X, = b,

x,, are the unknowns and the subscripted a’s and b’s denote constants.
- .

€ Xy Xny .- i
where x;, x,, unknowms can be writ-

For example, a general system of three linear equations in four
ten as
@)%, +apXs + Xy T diXe = by
(51X, + QpXp + A3y + ageXy = by
(31X, + QX + 333+ G34% = b
The double subscripting on the coefficients of the unknowns is a useful devi‘ce
that is used to specify the location of the coefficient in the system. The first subscript

on the coefficient a;; indicates the equation in which the coefﬁcl;ie.nt oceurs, and f;he
second subscript indicates which unknown it multiplies. Thus, a, is in the first equation

and multiplies unknown x;.
If we mentally keep track of the location of the +’s, the x’s, la.nd the ="’s, a system of
m linear equations in » unknowns can be abbreviated by writing only the reqtangular

array of numbers:

ayp @ " fan by
Qg Gy "t Gop b,
A1 amZ U anm bm

This is called the augmented matrix for the system. (The term nffam_'x is used in math-
ematics to denote a rectangular array of numbers, Matrices arise i many cont'exts,
which we will consider in more detail in later sections.} For example, the augmented

matrix for the system of equations .
X+ X+2x3=9
2x; +dx, —3x3 = 1
3x, + 6x, — 5x3 =0
is
1 1 2 9
2 4 =3 1
3 6 —35 0

REMARK. When constructing an augmented matrix, the unknowns must be written 111

the same order in each equation and the constants must be on the right.

EMENTARY
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The basic method for solving a system of linear equations is to replace the given
system by a new system that has the same solution set but which is easier to solve,
This new system is generally obtained in a series of steps by applying the following
three types of operations to eliminate unknowns systematically.

1. Muktiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a multiple of one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equa-
tions in the associated system, these three operations correspond to the following op-
erations on the rows of the augmented matrix. -

I. Multiply a row through by a nonzero constant,
2. Imterchange two rows.
3. Add a multiple of one row to another row.

These are called elementary row operations. The following example illustrates how
these operations can be used to solve systems of linear equations. Since a systematic
procedure for finding solutions will be derived in the next section, it is not necessary
to worry about how the steps in this example were selected. The main effort at this time
should be devoted to understanding the computations and the discussion.

Example 3 In the left column below we solve a system of linear equations by oper-
ating on the equations in the system, and in the right column we solve the same system
by operating on the rows of the augmented matrix. ‘

x+ y+2z=0 1 1 2 9
2x+dy—3z=1 2 4 -3 1
3x+ov—35z=10 3 6 —5 0

Add —2 times the first equatiori to the second Add —2 times the first row to the second to
to obtain obtain
x+ y+2z= 9 1 1 2 9
2y—7z_‘= -17 0 2 -7 =17
3x+6y—5z= 0 3 6 -5 0
Add —3 times the first equation to the third to Add —3 times the first row to the third to obtain
obtain )
xt y+ 2z= g 1 1 2 9

2y~ Tz=—17 0 2 -7 —17

y—Uz= 27 0 3 -1 =27
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Multiply thie second equation by # to obtain

x+ y+ 2z= 9
y— fz= %
3y — 11z = —27

Add 3 times the second equation to the third
to obtain

x+yt+lz=
y—fz=-%
— 4= -4

Multipty the third equation by —2 to obtain

x+y+2z= 9
y—bz=-%
z= 3

Add 1 times the second equation to the first
to obtain

5

x + A= B
Iy = 17

y— 2= T2l
z= 3

Add —¥ times the third equation to the first and
1 times the third equation to the second to obtain

Multiply the second row by % to obtain
1 1 2 9
0 3 —11 -27

Add —3 times the second row to the third to
obtain

!

\o

<

[ T S ]
|

bojrs b=y BN
1

w M3

S
; i

Multiply the third row by —2 to obtain

1 1 2 9
0 1 -} -¥
o o 1 3]

Add —1 times the second row to the first to
obtain

Lo % ¥
0 1 -§ -¥
0 0 1 3

Add % times the third row to the first and §
times the third row to the second to obtain

3. Find the solution set of each of the following lincar equations.
(a) Tx— 35y =3 (b) 3x, —5x, + 4x; =7
{c) —8Bxy+2xy— 5k 4+ 6x,=1 d)3Iv—-8w+2x—y+4dz=10

4. Find the avgmenied mairix for each of the following systems of linear equations,

{a) 3x; —2x, = —1 (b) 2x, +2x;=1 () xy +2x, — x3txs= 1 @) x, =1
4x, +5x,= 3 3oy —xy tAxy =7 3x;+ x5 —x5=2 X, =
Tx; +3x,= 2 6x +x,— x3=0 X3+ Txy =1 Xy =

5, Find a system of linear equations corresponding to the augmented matrix.

Y

2 0 0 I3 0 -2 s
@|3 -4 0 . y|7 1 4 -3
o 1 1 0 -2 1 7
fi o 0 0 7
(7 1 -3 5 0 1 0 0 -2
() ] (d)
_ 1 4- 0 1 6 0 1 0 3
0 0 0 1 4

-6. (a) Find a linear equation in the variables x and y that has the general solution x = 5 + 2¢
y=1i ’

(b) Show that x = #, y = §t - § is also the general solution of the equation in part (a).

7, The curve y = ax* + bx + ¢ shown in Figure 2 passes through the points (x;, ¥,), (13, ),

and (x3, ¥3). Show that the coefficients «, b, and ¢ are a solution of the system of linear

equations whose augmented matiix is ‘ ‘
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x =1 T o 0 1
y =2 60 1 0 2
z=3 0 0 1 3

The solution

is now evident.

EXERCISE SET 1.1
1. Which of the following are linear equations in xy, x,, and x,?
(&) x; + 5% — V2 =1 (b) x; + 3xy + x5 = 2 (©) x; = —Tx; + 3x,
(D) x7%+x,+8x3=5 (&) x¥*—2x,+x=4 () mx, — V2x, + fxy =13

2. Given that k is a constant, which of the following are linear equations?

(b) kxl-—ixz=9 (c) 2%, + Ty —x; =0

(@) x, —x,+x;=sink Z

2
x5 ox 1y ‘Py y=axi+brte
B % 1oy
2 ) (x5, 2)
¥3 X3 ¥3 (xlryl)
{23, y2)
X
»  Figure 2

For v_vhjch value(s) of the constant k does the following system of linear equations have no
solutions? Exactly one solution? Infinitely many solutions?

x— y=3
2x—-2y=k

‘Consider the system of equations

ax+by=k
ex+dy=1i
ex+ fy=m

E;;S:ESS the relative positions of the lines ax+by=k ex+dy=1 and ex+ fy=m
(a) the system has no solutions

(b) the system has exactly one solution

(9) the system has infinitely many solutions
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10. Show that if the system of equations in Exercise 9 is consistent, then at least one equation
can be discarded from the system without altering the solution set.

11, Let k= {=m = 0 in Exercizse 9; show that the system must be consistent, What can be said
about the point of intersection of the three lines if the system has exactly one solution?

12. Consider the system of equations

x+y+2z=a
x + z=b
2x+y+3z=c

Show that in order for this system to be consistent, a, b, and ¢ must satisfy ¢ = o + b.

13. Prove: If the linear equations x, + kx; = ¢ and x; + Ix, = d have the same solution set, then
the equations are identical.

1.2 GAUSSIAN ELIMINATION

In this section we shall give a systematic procedure for solving systems of linear equa-

tions; it is based on the idea of reducing the augmented matrix to a form that is simple
enough that the system of equations can be solved by inspection.

REDUCED In Example 3 of the preceding section, we solved the given linear system by reducing
ROW-ECHELON the augmented matrix to
FORM

1 0 0 1
01 06 2
0 0 1 3
from which the solution of the system was evident, This is an'example of a matrix that

is in reduced row-echelon form. To be of this form, a matrix must have the following
properties.

1. If a row does not consist entirely of zevos, then the first nonzero number in the
row is a 1. (We call this a leading 1.)

2. Ifthere are any rows that consist entirely of zeros, then they are grouped together
at the bottom of the matrix.

3. Ir any two successive rows that do not consist entirely of zeros, the leading 1 in
the lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else.

A matrix having properties 1, 2, and 3 (but not necessarily 4) is said to be in row-
echelon form.

1.2 Gaussian Elimination / 9

Exampie 1 The following matrices are in reduced row-echelon form.

0 i -2 0 1
1 0 0 4 1 00 0 0 0 1 3 0 0
0 1 0 71 10 1 0} 0 0 0 0 ol lo o
0 0 I -1 0 0 1 0 0 0 0 0

The following matrices are in row-echelon form but not in reduced row-echelon form.

1 4 3 71 110 0 I 2 6 0
01 o6 2 10 1 0 |0 0 I | 0
001 3 00 0 0 0 0 0 1

The reader should check to see that each of the matrices above satisfies all the necessary
requirements, ‘

~

REMARK. As the preceding example illustrates, a matrix in row-echelon form has zeros
below each leading 1, whereas a matrix in reduced row-echelon form has zeros both
above and below each leading 1.

If, by a sequence of elementary row operations, the augmented matrix for a system
of linear equations is put in reduced row-echelon form, then the solution set of the
system will be evident by inspection or after a few simple steps. The next example
illustrates this.

Example 2 Suppose that the augmented matrix for a system of linear equations has
been reduced by row operations to the given reduced row-echelon form. Solve the

system. ‘

[t 0 o0 s (10 0 4 —1
@ [0 1 o -2 ™o 1 o 2 6

0 0 1 4 0 0 1 3 2

(1 6 0 0 4 -2 Lo o o

6o 0 0 0 0 0 -

Solution (a). The corresponding system of equations is

x = 5
X2 = = 2
Xy = 4
By inspection, 3«:1 =5x= —2,x;=4,
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GAUSSIAN
ELIMINATION

Solution (b). The corresponding system of equations is

X + 4‘x4 = -]
X, +2xy= 6

Since x,;, x,, and x, correspond to leading 1°s in the augmented matrix, we call them
leading variables. The nonleading variables (in this case x,) are called fiee variables,
Solving for the leading variables in terms of the free variable gives

X = —1—4x,
xzm 6““2x4
Xy = 2“3X4

From this form of the equations we see that the free variable x, can be assigned an
arbitrary value, say ¢, which then determines the values of the leading variables x,, x,,

and x;. Thus there are infinitely many solutions, and the general solution is given by

the formulas
x=—l—4,  x,=6-2 X3 =23t Xy=1

Solution (c). The corresponding system of equations is

X+ 6x; +dxs = —2
X3 +3x;= 1
X4 + st == 2

Here the leading variables are x,, x5, and x,, and the free variables are x, and x5. Solving
for the leading variables in terms of the free variables gives

X = —2 - 6x, — 4xs
£y ™ 1“3}:5
Xy = 2"'5x5

Since x5 can be assigned an arbitrary value, ¢, and x, can be assigned an arbitrary value,
$, there are infinitely many solutions. The general solution is given by the formulas

) =-2—~6s—4f, x,=35, x3=1-34 x3=2-5t, x5={

Solution (d). The last equation in the corresponding system of equations is
Oxy + 0xy + Oxy = 1

Since this equation cannot be satisfied, there is no solution to the system.

We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row-echelon form. Now we shall give a step-by-step procedure
that can be used to reduce any matrix to reduced row-echelon form. As we state each
step in the procedure, we shall illustrate the idea by reducing the following matrix to
reduced row-echelon form.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

1 2 -5 3 6 14

1.2 Gaussian Elimination / 11

0 0 -2 0 7 12
2 4 —10 6 12 28
2 4 =3 6 —5 -1

Locate the leftmost column that does not consist entirely of zeros.

0 0o -2 0 7 12
2 4 —10 6 12 28
2 4 -5 6 -5 -1

T.eftmost nonzero column

Interchange the top row with another row, if necessary, to bring a nonzero
entry to the top of the column found in Step 1.

2 4 —10 6 12 28
0 0 -2 0 7 12
2 4 -5 6 -5 -1

The first and second
rows in the preceding
matrix were interchanged,

If the entry that is now at the top of the column found in Step 1 is g,
muitiply the first row by 1/a in order to introduce a leading 1.

The first row of the

0 0o -2 0 i 12 preceding matrix was
nultiplied by .

2 4 -5 6 -5 -1 pettye

Add suitable multiples of the top row to the rows below so that all entries
below the leading 1 become zeros.

1 2 =3 3 6 14 —2 times the first row of
0 0 -2 0 7 12 the preceding matrix was
0 0 5 0 —17 —29 added to the third row.

Now cover the top row in the matrix and begin again with Step 1 applied
to the submatrix that remains, Continue in this way until the enfire matrix
is in row-echelon form.

I 2 -5 3 6 14
0 0 -2 0 7 12
0 0 5 0 —-17 -29

LLeftmost nonzero column in
the submatrix
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1 2 =5 3 6 14 ’ll“lhe ﬁrbst row in
g the submatrix was
0 0 1 0 ~3 —6 multiplied by —§
0 0 5 0 —17 - 29J to introduce a leading 1.
. -1 — 5 times the first row of the
FI 2 3 3 6 14 submatrix was added to the
¢ 0 -% -6 second row of the submatrix
1 to introduce a zero below
.0 0 0 0 2 1- the leading .
[1 2 -5 3 . 6 14 The top row in the submatrix
0 0 i 0 -1 -6 was covered, and we
returned again to Step 1.
o o o 0 % 1 5 P
T——Leftmost nonzero column

in the new submatrix

. N The first (and onky) row
1 2 3 3 6 141> in the new submatrix
0 0 1 60 - -6 was multiplied by 2
1

to introduce a
0 0 0 0 2 jeading 1.

The entire matrix is now in row-echelon form, To find the reduced row-echelon form
we need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable
multiples of each row to the rows above to introduce zeros above the

leading t’s.

[1 2 =5 3 6 14] I times the third row of
0 0 1 0 0 1 the preceding matrix was
added to the second row.
o 0 0 0 1 2 |
1 2 =5 3 0 2] -G times the third
0 0 1 0 0 1 row was added to
he first .
o 0 o0 0o 1 2 (he Tt row
FI 2 0 3 0 7 5 times the second
0 0 | 0 0 1 row was added to
he first .
i 0 0 0 0 1 2_ the first row

The last matrix is in reduced row-echelen form.

The above procedure for reducing a matrix to reduced row-echelon form is called
Gauss—Jordan elimination* (see page 13). If we use only the first five steps, the
procedure produces a row-echelon form and is called Gaussian elimination.

REMARK. It can be shown that every matrix has a unique reduced row-echelon form,
that is, one will amive at the same reduced row-echelon form for a given matrix no
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matter how the row operations are varied. (A proof of this result can be found in the
article *“The Reduced Row Echelon Form of a Matrix is Unique: A Simple Proof,” by
Thomas Yuster, Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93-94,) In contrast,
a row-echelon form of a given matrix is not unique: different sequences of row oper-
ations can produce different row-echelon forms.

Example 3 Solve by Gauss—Jordan elimination,

X+ 3x, — 2x5 + 2x;5 =
2xp +06x; — 5x3 ~ 2xy -+ 4dxg— 3xe= —1
5x5 + 10x, + 15x5= 5

2x; + 6x, + Bxy+dx; + 18x,= 6

The augmented matrix for the system is

-2 0 2 0 0
-5 =2 4 -3 -1
5 10 0 15 5
0 8 4 18 6

S I e T N TP
[ A s B SO %

# Karl Friedrich Gauss {1777 -1855) was a German mathematician and scientist. Sometimes called the
“prince of mathematicians,”” Gauss ranks with Isaac Newton and Archimedes as one of the three preatest
mathematicians who ever lived. In the entire history of mathematics there may never have been a child so
precacious as Gauss—by his own account he worked out the rudiments of arithmetic before he could talk.
One day, before he was even three years old, his genius became apparent to his parents in a very dramatic
way. His father was preparing the weekly payroll for the laborers under his charge while the boy watched
quietly from a corner, At the end of the long and tedious calculation, Gauss informed his father that there
was an error in the result and stated the answer, which he had worked out in his head, To the astornishment
of his parents, a check of the computations showed Gauss to be correct!

In his doctoral dissertation Gauss gave the first complete proof of the fundamental theorem of algebra,
which states that every polynomial equation has as many solutions as its degree. At age 19 he solved a
problem that baffled Euclid, inscribing a regular polygon of seventeen sides in a circle using straightedge
and compass; and in 1801, at age 24, he published his first masterpiece, Disquisitiones Arithmeticae, con-
sidered by many to be one of the most brilliant achievements in mathematics. In that paper Gauss systematized
the study of number theory {properties of the integers) and formulated the basic concepts that form the
foundation of that subject.

Among his myriad achieverents, Gauss discovered the Gaussian or ‘‘bell-shaped”’ curve that is funda-
mental in probability, gave the first geometric interpretation of complex numbers and established their fun-
damertal role in mathematics, developed methods of characterizing surfaces intrinsically by means of the
curves that they contain, developed the theory of conformal (angle-preserving) maps, and discovered non-
Buclidean geometry 30 years before the ideas were published by others, In physics he made major conri-
butions to the theory of lenses and capillary action, and with Wilthelm Weber he did findamental work in
electromagnetism. Gauss invented the heliotrope, bifilar magnetometer, and an electrotelegraph.

Gauss was deeply religious and aristocratic in demeanor, He mastered foreign languages with ease, read
extensively, and enjoyed minerology and botany as hobbies, He disliked teaching and was usually cool and
discouraging to other mathematicians, possibly because he had already anticipated their work. It has been
said that if Gauss had published all of his discoveries, the current state of mathematics would be advanced
by 50 years. He was without a doubt the greatest mathermatician of the modem era.

Wilhelm Jordan (1842 1899) was a German engineer who specialized in geodesy. His contribution to
solving linear systems appeared in his popular book, Handbuch der Vermessungskunde (Handbook of Geo-
desy), in 1888.
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BACK- Example 4 It is sometimes preferable to solve a system of linear equations by using
. SUBSTITUTION Gaussian elimination to bring the augmented matrix into row-echelon form without
continuing all the way to the reduced row-echelon form. When this is done, the cor-
responding system of equations can be solved by a technique called back-substitution.
We shall illustrate this method using the system of equations in Example 3.

From the computations in Example 3, a row-echelon form of the augmented

Adding —2 times the first row to the second and fourth rows gives

1 3 -2 0 2 0 0
0 0 -1 -2 0 -3 -1
0 0 5 10 0 15 5
0 0 4 8 ¢ 18 6

matrix is
Multiplying the second row by — 1 and then adding — 5 times the new second row to )
the third row and — 4 times the new second row to the fourth row gives 1 3 -2 0 2 0 0
3 3 5 0 5 0 0 0 0 1 2 0 3 1
, ) 1 2 0 3 1 0 0 0 0 0 1 %
0 0 0 0 0 0 0 -0 0
0 0 0 0 0 0 0 .
0 0 0 0 0 6 2 To solve the corresponding system of equations
Interchanging the third and fourth rows and then multiplying the third row of the re- X1+ 30— 2x + 2x5 =
sulting matrix by § gives the row-echelon form . Xy + 2x, + 3xs =1
. vo=1
(1 3 -2 0 2 0 0 673
0 0 1 9 0 3 1 we proceed as follows:
0 0 0 0 0 1 %
0 0 0 0 0 0 0 Step 1. Solve the equations for the leading variables.

Adding — 3 times the third row to the second row and then adding 2 times the second

row of the resulting matrix to the first row yields the reduced row-echelon form Xy = —3x; + 2xy ~ 2xg

X3=1“'2X4“3x6

1 3 0 4 2 0 0 .
XT3
0 0 1 2 0 0 0
0 0 0 0 0 1 i
0 0 0 0 0 0 0 Step 2. Beginning with the bottom equation and working upward, successively
L bstitut ion i i i
The corresponding system of equations is substitute each equation into all the equations above it. g
xy -+ 3x, +4x, +2x, =0
Xy + 2%, =0 Substituting x,; = § into the second equation yields
) xﬁz% X = H3x2+2)€‘3_2x5
(We have discarded the last equation, 0x; + 0x, + Ox; + Ox, + Oxs + 0x¢ = 0, since it o Xy = —2xy
will be satisfied automatically by the solutions of the remaining equations.) Solving for Xg =14

the leading variables, we obtain _— L S
Substituting x, = —2x, into the first equation yields

Xy = —3)62 - 4X4 - 2x5

Xy = —3x, —4x, — 2x
Xy = —2x, 1 2 4 s
_ 1 x3=‘- —21,‘4
xsm'a 1
x(—)zg

If we assign the free variables x,, x,, and x5 arbitrary values r, 5, and ¢, respectively,

the general solution is given by the formulas
Step 3.  Assign arbitrary values to the free variables, if any.

X =—3r—4s—2t,  x,=tf, x3=—25 x=8,  Xs=l Xg=%
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If we assign x,, x,, and x; the arbitrary values r, s, and ¢, respectively, the general and substituting the second equation into the top yields

solution is given by the formulas : Pl
— 1 .

x; = —3r—4s 2, X, =r, xy= —25, Xy =5, X5 =1, X5 =% y=2

z=173

This agrees with the solution obtained in Example 3. |
This agrees with the result found by Gauss—Jordan elimination in Example 3 of

REMARK. The arbitrary values that are assigned to the free variables are often called Section 1.1.
parameters. Although we shall generally use the letters #, s, ¢, . . . for the parameters,
any letters that do not conflict with the variable names may be used. - HOMOGENEOUS A system of linear equations is said to be homogeneous if the constant terms are all

- LINEAR SYSTEMS  zero; that is, the system has the form

Example 5 Solve anx Hapx; +ctapx, =0
x+ y+2z=9 @1 %) +dgpX, +-+agx, =0
2x+4y—3z=1 : :
3x + 6}/ —5z=10 Xyt Gua Xy + 0 b AynXy = 0
Every homogeneous system of linear equations is consistent, since all such systems
havex, =0,x, =90,...,x, = 0 as a solution. This solution is called the frivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are

only two possibilities for its solutions:

by Gaussian elimination and back-substitution,

Sofution. This is the system in Example 3 of Section 1.I. In that example we converted
the augmented matrix

[1 1 2 9
2 4 -3 I
3 6 -5 0

¢ The system has only the trivial solution.
® The system has infinitely many solutions in addition to the trivial solution.

to the row-echelon form , . ..
© In the special case of a homogeneous linear system of two equations in two unknowns,

| 1 1 2 9 say
L By =0
0 0 ) 3| ax+by= (a1, &, not both zero)
- X+ by =10 (a,, b, not both zero)
ding to this matrix is . . . . . .
The system corresponding the graphs of the equations are lines through the origin, and the trivial solution corre-
x+y+2z= 9 sponds to the point of intersection at the origin (Figure 1).
T, 17
Yy—gz=—F
z= 3 Ay Ay
Solving for the leading variables yields x4 by =0 Gix+ b1y =0
’ and
x=9—-y—2z agx +bgy =0
e T
y=-—%¥+i N N
z=3
Substifuting the bottom equation into those above vields gt + byy = 0
x=3—-y
y=2 . B
Figure 1 - Only the trivial solution | Infinitely many solutions !

z=73
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There is one case in which a homogeneous system is assured of having nontrivial
solutions, namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in five unknowns.

Example 6 Solve the following homogeneous system of linear equations by
Gauss—Jordan elimination. .

le+2xZ"_“ X3 +X520
—Xp xZ+2X3 "'"3.):4 +X5=0 (1)
x1+ x2"2x3 """'xS:O

X3+ x4+x530

Solution. The augmented matrix for the system is

2 2 -1 0 1
-1 -1 2 =3 1
1 1 -2 0 -1
o o0 1 1 1

oo o o

Reducing this matrix to reduced row-echelon form, we obtain

1 1 0 0 i 0
0 0 1 0 1 0
0 0 0 i 0 0
0 0 0 0 0 0
The corresponding system of equations is
X+ xp +x5=0
X3 +x;=10 2)
. 4 =
Solving for the leading variables yields
X = Xy —Xg
Xy = —Xs
xg= 0
Thus, the general solution is
X =854 X =4, Xy = =1, x=0, xg=1t

Note that the trivial solution is obtained when s == 0."

Example 6 illustrates two important points about solving homogeneous systems
of linear equations. First, none of the three elementary row operations alters the final
column of zeros in the augmented matrix, so that the system of equations corresponding

to the reduced row-echelon form of the augmented matrix must also be a homogeneous

COMPUTER

7 SOLUTION OF

LINEAR SYSTEMS
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system [see system (2)]. Second, depending on whether the reduced row-echelon form
of the augmented matrix has any zero rows, the number of equations in the reduced
system is the same as or less than the number of equations in the original system
{compare systems (1) and (2)]. Thus, if the given homogeneous system has m equations
in n unknowns with m << i, and if there are » nonzero rows in the reduced row-echelon
form of the augmented matrix, we will have r <n. It follows that the system of equa-
tions corresponding to the reduced row-echelon form of the augmented matrix will have

the form

cx, +3()=0
.-xkz +2( ):0 (3)
e +3()=0

where x; ,%y,,...,x, are the leading variables and Z{ ) denotes sums (possibly all
different) that involve the n — r free variables [compare system (3) with system (2)
above]. Solving for the leading variables gives

Xy, = -2 )
X, = —2()
Xy =‘“E()

r

As in Example 6, we can assign arbitrary values to the free variables on the right-hand
side and thus obtain infinitely many solutions to the system. '
In summary, we have the following important theorem.

E Theorem 1.2.1. A4 homogeneous system of linear equations with more unknowns
i than equations has infinitely many solutions.

REMARK. Note that Theorem 1.2.1 applies only to homogeneous systems. A nonhom-
ogencous system with more unknowns than equations need not be consistent (Exercise
34); however, if the system is consistent, it will have infinitely many solutions, This
will be proved later.

In applications it is not uncommon to encounter large linear systems that must be solved
by computer. Most computer algorithms for solving such systems are based on Gaussian
elimination or Gauss—Jordan elimination, but the basic procedures are often modified
to deal with such issues as

¢ Reducing roundoff errors
e Minimizing the use of computer memory space
* Solving the system with maximum speed

Some of these matters will be considered in Chapter 9, For hand computations fractions
are an annoyance that often cannot be avoided. However, in some cases it is possible
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to avoid them by varying the elementary row operations in the right way. Thus, once
the methods of Gaussian elimination and Gauss—Jordan elimiination have been mas-
tered, the reader may wish to vary the steps in specific problems to avoid fractions (see

Exercise 18).

EXERCISE SET 1.2

1. Which of the following 3 X 3 matrices are in reduced row-echelon form?

1 0 07 10 0] [0 1 0] 10 0 1 00
@lo 1 o mlo 1 0 @0 0 1 @0 o0 1 [0 0 0
[0 0 1 00 0] [0 0 0] 0 0 0] 0 0 1]
0 1 07 (11 07 0 27 0 0 17 0 0 0
@1 oo @lo 1 0 mlo 1 3 {0 oo Mlo oo
[0 0 0 [0 0 0] [0 0 0] 10 0o o] 0 0 0]

2. Which of the following 3 X 3 matrices are in row-cchelon form?

10 0] 12 0 1.0 0 13 4
@lo 1 0 wlo 1 ol @ijo 1 o] (@fo 01
[0 0 1 0 0 0 020 0 0 0
(1 5 -3 12 3]
@lo 1 1} (®]o oo
o o0 0 [0 0 1]

3. In each part determine whether the matrix is in row-echelon form, reduced row-echelon
form, both, or neither.

3 _
00110 1 oo s KRR
; ,
OF O ()0 0 L3 (°)0124}
01 0 4 -
0000 0 -
1 0 2 -
‘T -7 5 5 13223 09
£ 0
(d)_0132] ©@1o 00 01 ()go
00000 -

4. In each part snppose that the augmented matrix for a system of linear equations has been
reduced by row operations to the given reduced row-echelon form. Solve the system.

10 0 -3 10 0 -7 8
@{o 1 0 0 - (o 1 0 3 2
o o 1 7 o 0 1 1 -5
(1) “g ‘1’ g Z,_i -3 0 0
(© (dy| 0 0 i 0
¢ o0 o t 5 3 o o0 0 1
0 0 o0 o 0 -

. -8, In each part suppose that the augmented mairix for a system of linear equations has been
reduced by row operations to the given row-echelon form. Solve the system.

(1 -3 4 7 1 0 8§ -5 6
@i{o 1 2 2 i 1 4 -9 3
o 0 1 5 0 0 1 1 2
"1 7 -2 0 —8 -3
© 0 0 1 1 6 5 @ é “*:: [
0O 0 0o 1 3 9 0
0 0

0 0 0 0 0 0

: . 6. Solve each of the following systems by Gauss—Jordan elimination.

(8 x;+ x;+2x;= 8 (b 2x +2x+2x,= 0
—x = 2x+3xy= 1 —2x) +5x,+2xy = 1
x, — Ty + 4x; = 10 Bxy + x tdxy=—1

—2b+3¢= |1

3a+6b—3c= -2
ba+6b+3c= 5

&y x— y+22— w=-1 {d)
2+ y—2z—2w= -2
—x+2p—dz+ w= |
3x ~3w= -3

7. Solve each of the systems in Exercise 6 by Gaussian elimination.

.. 8. Solve each of the following systems by Gauss—Jordan elimination.

(@) 2%, —~3x,= -2 (b) 3x +2x— x3=-15
20+ xy= | Sx) +3x, 4 203 = 0
3x+2x,= 1 o+ p+3xn= 11

—=6x; —4x, +2x, = 30

() 4x,—8x,= 12 (d)
Ix) = 6xy= 9
—=2x;+4x,= —6

Wy—4z+ w= 1

x+ dy— z4+ w= 2

Ix+ 4+ z4+2w= 5
—2x— By+2z-2w= -4
x— 6p+3z = 1

: 9. Solve each of the systems in Exercise 8 by Gaussian elimination,

“10. Solve each of the following systems by Gauss—Jordan elimination.

(@ 5% —2x,+6x,=0 B x — 20+ x— 4dx,=1 {c) wt+2x— y=4

=2x + x4+ 3x,=1 X+ 3x,t+ Ty 2x,=2 x— y=3
X, = 12x5 =~ 1lxy — 16x, =5 w+3x—2y=7
2u+dv+wtx =7

‘11, Solve each of the systems in Exercise 10 by Gaussian elimination.

12. Without using pencil and paper, determine which of the following homogeneous systems
have nontrivial solutions,

(@ 2%, ~3x, 4+ dxy — x,=0 (byx; +3x— 2,=0

Txy+ x;—8x3+9x,=0 X, = 8x;=0
2x, + 80+ x3— x,=0 4xy =0
(©) ayx; +apx, +apn =0 (d) 3%, ~ 2x, =0

1%y + dgpXy + dpaxy =0 “bx, —4x, =10

1.2 Gaussian Elimination / 21
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13. Solve the following homogeneous systems of linear equations by any method.

@25+ 5+3n=0 (B3 +ntrnty=0 2+ 244z =0
E x, +2x, =0 5x; = Xp+ X3 =% =0 w — yp—3z=0
xnt+ x=0 2w+3x+ y+ z=0

—2w+ x+3y—2z=0

14. Solve the following homogencous systems of linear equations by any method.

(8) 2x— y—3=0 (b) v+3Iw—-2x=10 (c)y x +3x, +x,=0
~x+2y—=3z=0 2ut v—4dw+3x=0 x) +4x; -+ 2x; =0
x4+ y+dz=0 2u+3w+2w— x=0 — 23, — 2%y~ Xy =0
—4u—3w+5Sw—4x=0 2x; —dxy+ xyt+x;=0

Xy~ 2x%— xtx=0

15. Solve the following systems by any method.

() 21, — L+3L+4L,=9 (b) Zy+ Zy+Zs=0
-‘. I —2L+ 7L =11 —Z— 2, +27, - 37+ Zs=0
! 30, —3L+ L+50L= 8 Z+ Z,—2Z, —Zs=10

10 2Z,+22,~ Z +Zs=0"

I

21, + I+ 4L+ 4,

16. Solve the following systems, where g, b, and ¢ are constants.
(a) 2x+ y=a by x,+ x,+ x3=a
Ix+ay=b 2%, +2x; =5
3x2 + 3x3 =c

17. For which values of @ will the following system have no solutions? Exactly one solution?
Infinitely many solutions?

x+2y— 3z=4
: Ix— y+ 5z=12
' dx+ y+(@ - 1z=a+2

18, Reduce
2 1 3
0 -2 7
3 4 5

to reduced row-echelon form without introducing any fractions.

19. Find two different row-echelon forms of

;7]

20. Solve the following system of nonlinear equations for the unknown angles «, 8, and vy, where
l=a=2q0=852mand0=y<m
 2sina— cosf+3tany=3
- Asina+2cosf— 2tany =2
6sina—3cosB+ tany=9

olve the following system of nonlinear equations for x, y, and z.
x+y 4 zr=6
¥yt + 222 =2
22+ yt— z2=3
how that the following nonlinear system has eighteen solutions if 0= o =2m
p=p=27and0=y=2m
sing+2cos B+ 3tany=10
2sina+ ScosB+ 3tany =0
—gine—Scos B+ Stany=0
._'FOI‘ which value(s) of y does the following system of equations have nontrivial solutions?
(A=-3x+ y=20
x+(A-3p=0

:bonsider the system of equations

ax+ by =0
cx+dy=20
ex+ fy=10

Discuss the relative positions of the lines ax+by=0, ex-+dy=0, and ex+ fy=0
when .
() the system has only the trivial solution (b) the system has nontrivial solutions

Figure 2 shows the graph of a cubic equation y = ax® + bx? + cx + 4. Find the coefficients

a b, c, and d.
A} ¥

20
(0, 10)

(1,7
1 /V\I ] 1 1 1
-2 \/ 6
(3,-11)

20k (4,-14)

L 43

Figure 2

Ré.call fr‘om plane gecmetry that three points, not all lying on a straight line, determine a
unique circle. It is shown in analytic geometry that a circle in the xy-plane has an equation
of the form

a’+taP +bx+cy+d=0

'.l'_nd an equation of the circle shown in Figure 3..

.
"
<

=2.7)

(-4.5)

X
|
!

\-/‘4-3) Figure 3

1.2 Gaussian Elimination / 23
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27. Describe the possible reduced row-echelon forms of

e b ¢

d e f

g h i

28. Show that if ad — bc#0, then the reduced row-echelon form of

a b . 1 0
¢ a] ® lo 1

29, Use Exercise 28 to show that if ad — be#£ 0, then the system

ax+by=k
ex+dy=1
has exactly one solution.
360. Solve the system
2x; Xy = Ax,
2x, + xy+xy = Ax, .
—2x, 4 2%, + X3 = Axg
for x;, x,, and x; if
(@ A=1 (b) A=2
31, Consider the system of equations
c;x + by =0
ex+dy=10
(8) Show that if x=x,, y =y, is any solution of the system and k is any constant, then

x = kxy, ¥ = ky, is also a solution. .
(b) Show that if x = x;, y =y, and x = x,, ¥ = | are any two solutions, then x =x, + Xy,
. y=y¥, +y, is also a'solution.

32, Consider the systems of equations
(Dax+by=k (I ax+by =0
cx+dy=1 ex+dy=0
{a) Show that if x =x, y =y, and x = x;, y = y, are both solutions of I, then x = x| — x,,

¥ =y — ), is a solution of IL. . '
(b) Show that if x = x,, y = y, is a solution of I and x =g, y = y, is a solution of I, then

x=x +Xg, ¥y=y + ¥ is a solution of L.
33. (a) In the system of equations numbered (3), explain why it would be incorrect to denote
the leading variables by x|, x5, . . . , ¥, rather than x, , x , . . ., %;_as we have done.

(b) The system of equations numbered (2) is a specific case of (3). What value does r have
in this case? What are x, ,xy,,. . . ,%;, in this case? Write out the sums denoted by =(0)

in (3).

34. Find an inconsistent linear system that has more unknowns than equations.
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1.3 MATRICES AND MATRIX OPERATIONS

Rectangular arrays of real numbers arise in many contexts other than as augmented
matrices for systems of linear equations. In this section we shall consider such arrays
as objects in their own right and develop some of their properties for use in our later
work.

! Definition. A matrix is a rectangular array of numbers. The numbers in the array
- are called the entries in the matrix. 5

Example I Some examples of matrices are

)
¢, 210 -3] 3
-1 4 0

b

3

[u=

[
LPS I

| I
m—
B
o]

s TN
]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example I has
three rows and two columns, so its size is 3 by 2 (written 3 X 2). In a size description,
the first number always denotes the number of rows and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes 1 X 4,3X3,2x1,and
1 X 1, respectively. A matrix with only one column is called a column matrix {or a
column vector), and a matrix with only one row is called a row matrix {or a row vector).
Thus, in Example 1 the 2 X | matrix is a column matrix, the 1 X 4 matrix is a row
matrix, and the 1 X | matrix is both a row matrix and a cofumn matrix. (The term vector
has another meaning that we will discuss in subsequent chapters.)

REMARK. It is common practice to omit the brackets on a 1 X | matrix. Thus, we
might write 4 rather than [4]. Although this makes it impossible to tell whether 4
denotes the number ‘“four™ or the 1 X 1 mairix whose entry is ““four,” this rarely
causes problems, since it is usually possible to tell which is meant from the context in
which the symbol appears.

We shall use capital letters to denote matrices and lowercase letters to denote
numerical quantities; thus, we might write

21 7 a b ¢
AT[s 4 2] o C"[d e fJ

When discussing matrices, it is common to refer to numerical quantities as scalars.
Unless stated otherwise, scalars will be real numbers; complex scalars will be consid-
ered in Chapter 10,

The entry that occurs in row 7 and column j of a matrix 4 will be denoted by a;;.
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Figure 1

Thus, a general 3 X 4 matrix might be written as
dp dpp 13 dyg
A=1ay ap a3 axy
@y Q3 G333 Oaq |

and a general m X n matrix as

an . U a4y,
dp dyp "7 gy

A={ . . : (1)
am 1 am?. am n_|

When compactness of notation is desired, the preceding matrix can be written as
[aij]mx" or Eaij]

the first notation being used when it is important in the discussion to know the size

and the second when the size need not be emphasized. Usually, we shall match the

letter denoting a matrix with the letter denoting its entries; thus, for a matrix B we

would generally use b;; for the entry in row / and column j and for a matrix C we

would use ¢;;.
The entry in row { and colunn j of a matrix 4 is also commonly denoted by the

symbol {4),;. Thus, for matrix (1) above, we have
(A)ij =y

PR
70
we have (4);; =2, (A)z = —3, ()2 =7, and (d),; = 0. o )
Row and column matrices are of special importance, and it is common practice to
denote them by boldface lowercase letters rather than capital letters. For such matrices

double subscripting of the entries is unnecessary. Thus, a general 1 X »n row matrix a
and a general m X 1 column matrix b would be written as

and for the matrix

a=f[a; a; - a,] and b=
b”!
A matrix 4 with # rows and n columns is called a square matrix of order n, and

the entries a,;, @3, - . . , 4, are said to be on the main diagonal of A (see the shaded

entries in Figure 1),

ayp ap v Ay,
Ay dyp Tt Gy
Qpr Gz "7 Gun

" OPERATIONS ON
. MATRICES
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So far, we have used matrices to abbreviate the work in solving systems of linear
equations. For other applications, however, it is desirable to develop an ‘‘arithmetic of
matrices™ in which matrices can be added, subtracted, and multiplied in a useful way.
The remainder of this section will be devoted to developing this arithmetic,

Definition, Two matrices are defined to be egual if they have the same size and
their corresponding entries are equal, !

H
i
{
L

In matrix notation, if 4 = [a;;] and B = [b,;] have the same size, then 4 = B if and
only if (4),; = (B)y;, or equivalently, a;; = b;; for alt i and j.
Example 2 Consider the matrices
21 2 1 2 10
= B = =
o I IR O I
If x =5, then 4 = B, but for all other values of x the matrices 4 and B are not equal,

since not all of their corresponding entries are equal. There is no value of x for which
A = C since 4 and C have different sizes.

1 matrix obtained by adding the entries of B to the corresponding enfries of 4, and
: the difference A — B is the matrix obtained by subtracting the entries of B from
i the corresponding entries of 4. Matrices of different sizes cannot be added or

!
| subtracted : _ |

SE Definition. If 4 and B are matrices of the same size, then the sum 4 + B is the
i
i

In matrix notation, if 4 = [a;;] and B = [b,;] have the same size, then

4+ B):'j = (A)ij + (B)J‘j =+ b:‘j and (4- B)ij = (A)ij - (B)ij =a;— bt‘j

Example 3 Consider the matrices

2 1 0 3 —4 3 5 1 -
A=| ~1 0 2 4 B= 2 2 0 -1 C=[2 2]
4 =2 7 0 3 2 —4 5
Then '
-2 4 5 4 6 -2 -5 2
A+ B = 1 2 2 3 and A-B=|-3 -2 2 5
7 0 3 5 1 -4 11 -5
The expressions 4 + C, B+ C, 4 — C, and B — C are undefined.

! Definition. If 4 is any matrix and ¢ is any scalar, then the product cA is the ma-
“trix obtained by multiplying each entry of 4 by c.

| APUNSUR———
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In matrix notation, if 4 = [a;;], then

(CA)U = c(d);; = cayy

Example 4 For the matrices
2 3 4 0o 2 7 9 —6 3]
= = =
4 l:l 3 1] B [—1 3 —5] [3 0 12
we have

4 6 8 0 -2 -7 . 3 2 1]
— — frong --C:
24 [2 6 2] (=15 [1 -3 5] ® [1 0 4

It is common practice to denote (— 1)B by — 8.

If 4, 4,,...,A,are matrices of the same size and ¢;, ¢5, . . ., ¢, are scalars, then
an expression of the form

ClAl 4 CzAz +E C"An

is called a linear combination of 4, 4,, . .., 4, with coefficients ¢, c;, .. ., c,. For
example, if 4, B, and C are the matrices in Example 4, then

24 -B+3C=2A+(— DB +4C
4 6 8§ 0 -2 -7 3 -2 1]
2.6 2 1 -3 5 1 0 4
72 2
14 11

is the linear combination of 4, B, and C with scalar coefficients 2, — 1, and %.

Thus far we have defined multiplication of a matrix by a scalar but not the rm.ll- :
tiplication of two matrices. Since matrices are added by adding corresponding entries
and subtracted by subtracting corvesponding entries, it would seem natural to define
multiplication of matrices by multiplying corresponding entries. However, it tums out
that such a definition would not be very useful for most problems. Experience has led
mathematicians to the following less natural but more useful definition of matrix
multiplication.

L

l Definition. If 4 is an m X # matrix and B is an » X n matrix, then the product AB
is the m X »n matrix whose entries are determined as follows. To find the entry in

- row i and column j of 4B, single out row i from the matrix 4 and colomn j from

| the matrix B. Multiply the corresponding entries from the row and column to- :
i gether and then add up the resulting products. -

. m

Figure 2

1.3 Matrices and Matrix Operations / 29

Example 5 Consider the matrices

| 2 4 4 i 4 3

A= 2 6 0 B=|0 -1 3 1

2 7 5 2
Since 4 is a 2 X 3 matrix and B is a 3 X 4 matrix, the product AB is 2 2 X 4
matrix, To determine, for example, the entry in row 2 and column 3 of 48, we single

out row 2 from 4 and column 3 from B. Then, as illustrated below, we multiply cor-
responding entries together and add up these produects,

[124]4 1 4 3“_[']:[,:']:]

0 - 1
2 60 b3

2 7 s 2~"_D|:|D

(2:4) + (6-3) +(0-5) = 26

The entry in row 1 and column 4 of 48 is computed as follows.

(24 o 5 -|0O0E
260 2 7 5 2 DDDD
(1-3)+2-D+@E-2)=13

The computations for the remaining products are
A4+ H+@E3-2= 12
(I-H—-2-DH+@E-nNn= 27
(L1 4+23)+4-5= 30
CZ-H+E-H+0-2)= 38
Z-D—-6D+HO0-NH=—4
2N+GEDH+O0-= 12

1227 30 13
AB=
[ 8 ~4 26 12}

The definition of matrix multiplication requires that the number of columns of the
first factor 4 be the same as the number of rows of the second factor B in order to form
the product 4. If this condition is not satisfied, the product is undefined. A convenient
way to determine whether a product of two matrices is defined is to write down the
size of the first factor and, to the right of it, write down the size of the second factor.
If, as in Figure 2, the inside numbers are the same, then the product is defined. The
outside numbers then give the size of the product.

A B N AB
X x

r r n - mXn

Inside ’

Qutside
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Example 6 Suppose that 4, B, and C are matrices with the following sizes:

A

B

C

Figure 3

PARTITIONED
MATRICES

VMIATRIX
MULTIPLICATION
BY COLUMNS
AND BY ROWS

AxX4 47 7X3

Then AB is defined and is a 3 X 7 matrix; CA4 is defined and is a 7 X 4 matrix; and
BC'is defined and is a 4 X 3 matrix. The products AC, CB, and BA are all undefined.

If A=[a;] is a general m Xr matrix and B =[b,,] is a general r X n matrix,.
then as illustrated by the shading in Figure 3, the entry (4B);; in row / and column j
of 4B is given by

(AB);; = apby; + apby;+agby; + -+, b, 2
gy dp Ay
a21 a22 e aZr b“ blZ ot bl; e bln
: : : by by bz;‘ e by,
AB = L . . . .
a4y an dir : : : :
: : : brl br'z e brj et brn
_am] amZ e amr_

A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, below are three
possible partitions of a general 3 X 4 matrix 4—the first is a partitio:_l of 4 into four
submatrices A,,, A5, A3, and A,,; the second is a partition of A. into its row matrices
¥,, Xy, and ry; and the third is a partition of 4 into its column matrices ¢;, ¢, €3, and ¢,:

4y dpp G131 du r
A=|ay axp ax; i Gyq | = j“ jm]
e il S | Az Ay
| @31 @3y a3 | g ]
ap dz Gy gy ¥y
Ad=|ay ap an ay|[=|r
| a3 ax dazp A, | [N
ap i iz EaIS ia14
4=1|ay E 55 Eazs i‘aza =[e; € €5 ¢4
| @31 i L 7) 5033 Ea34_

Sormetimes it may be desirable to find a particular row or column of a matrix product
AB without computing the entire product. The following results, whose proofs are left
as exercises, are useful for that purpose:

Fth column matrix of 4B = A{ jth column matrix of B ()

ith row matrix of AB = [ith row matrix of 418 (4)

" MATRIX

PRODUCTS
AS LINEAR
COMBINATIONS

1.3 Matrices and Matriv Operations / 31

Example 7 If 4 and B are the matrices in Example 5, then from (3) the second column
matrix of 48 can be obtained by the computation

1241
2 60

-1
7
i

- [

Second column
of B

Second column
of AR

and from (4) the first row matrix of 4B can be obtained by the computation
4 1 4 3
[1 2 4jj0o -1 3 1
7 5 2

={12 27 30 13]

First row of 4

First row of AB

If aj, a,, ..., a, denote the row matrices of 4 and by, by, ..., b, denote the
column marices of B, then it follows from Formulas (3) and (4) that

AB=A[by byt b, 1=[db, | Ab, | -~ | 4b,] &)
(AB computed column by columr) ‘
4 a8
a, a,B
AB=|-7"1B={ -~ (6)
a, a, B

(AB computed row by row)

REMARK. Formulas (5) and (6) are special cases of a more general procedure for
muitiplying partitioned matrices (see Exercises 15-17).

Row and column matrices provide an alternative way of thinking about matrix multi-
plication. For example, suppose that

gy Gy "t ay, x

A= a.m a.22 - a?,, and x= Aiz

Qi Gy 0 4y, X,

Then
apxy tapx, v +oagx, ap ap | a,
dx = azfxl +a29:x2 g o az,,_x,, —x, a.m o, a?z P—— a?n
AX; + am'le R am;rxn A Qo A
(M
,,,, T ,W ————— —
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In words, (7) tells us that the product Ax of a matrix A with a column matrix X is a
linear combination of the column matrices of A with the coefficients coming from the
matrix X, In the exercises we ask the reader to show that the product yA4 of a 1 X m
matrix y with an m X n matrix A is a linear combination of the row matrices of A with

scalar coefficients coming from v.

Example 8 The matrix product

-1 3 27f 2 1
1 2 -3/ -1]={ -9
2 1 -2 3 -3
can be written as the linear combination
le 3 2 1
2 11=112143]-3|=] -9
2 I -2 -3
and the matrix product
-1 3 2
f1 -9 —-3] 1 2 =3 1/=[-16 —18 35]
2 P -2
can be written as the linear combination
1['—1 3 2]-9[F 2 -3]-3{2 1 ~-2]=[-16 —18 35]

It follows from (5) and (7) that the Jth column matrix of a product AB is a linear
combination of the column matrices of A with the coefficients coming from the jih
column of B.

Example 9 We showed in Example 5 that

4 1 4 3
2
e A STt I A o]
2 7 5 2 N

The column matrices of 4B can be expressed as linear combinations of the colummn
matrices of 4 as follows:

12 1 2
| =41 of2] o

K 2] 0,
[ 27]_ [1] 2 L4
-4 (2] 6] |o]

30 (17 [2 [ 4
]=4 +3 J+5

MATRIX FORM OF
‘A LINEAR SYSTEM

TRANSPOSE OF
A MATRIX

1.3 Matrices and Matrix Operations / 33

BN R

Matrix multiplication has an important application to systems of linear equations. Con-
sider any system of m linear equations in # unknowns.

apXy +apx, +o0+oayx, = b

@y T apXy o+ oagx, = b

2,1 X1 + amzxz +-r oy = bm .

Since two marices are equal if and only if their corresponding entries are equal,
we can replace the m equations in this system by the single matrix equation

auxy taprn oo tay, b,
dorXy b agXs + 0+ ay,x, by
amlxl + amZxZ +- anmxn bm

The m X 1 matrix on the left side of this equation can be written as a product to give

Ay dp o dg X b
dap  dp Qan | %2 | by
am 1 amZ amn xn ) bm

If we designate these matrices by 4, x, and b, respectively, the original system of m
equations in » unknowns has been replaced by the single matrix equation

Ax=Db
The matrix 4 in this equation is called the coefficient matrix of the system. The aug-

mented matrix for the system is obtained by adjoining b to 4 as the last column; thus
the angmented matrix is

1
ay ap ccoay b
b
typ Gy "t dy, | Dy
[4 1 Db]=1} . P
. E N
aml amz e anm : bm

We conclude this section by defining two matrix operations that have no analogs in the
real numbers,

¢ Definition, If 4 is any m X n matrix, then the transpose of A, denoted by 47, is |
defined to be the # X m matrix that results from interchanging the rows and col-

| ummns of 4; that is, the first column of 47 is the first row of A, the second column
of AT is the second row of 4, and so forth.
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Example 10 The following are some examples of matrices and their transposes.

dyy dyp Gy ayy 23
d3p G3p 33 3y 5 6

|_a“ dy Az

a a a 21 5
A T o 12 22 32 B r_. T 3 Tr_
Gy Gy dag 3 4 6 ¢ p (4]

[y

A1q dpq dyy

Observe that not only are the columns of 47 the rows of 4, but the rows of 47 are
columns of 4. Thus, the entry in row i and column j of A7 is the entry in row j and
column 7 of 4; that is,

(4 T)a‘j = (d); (3)

Note the reversal of the subsctipts. : _

In the special case where A4 is a square matrix, the transpose of 4 can be obtained
by interchanging entries that are symmetrically positioned about the main diagonal
(Figure 4). Stated another way, A" can be obtained by “‘reflecting’’ 4 about its main

diagonal. .
I -2 4 N -
y@/@ . 13 =5
A={ 3 7 0i— ©/<L>(© —AT=|-2 7 8
-5 &8 6 &5 6, 4 0 6

Interchange entries that are
symmetrically positioned
about the main diagonal.

Figure 4
TRACE OF [ Definition. If 4 is a square matrix, then the #race of A, denoted by tr(4), is de- §
A SQUARE E fined to be the sum of the entries on the main diagonai of 4. The trace of 4 is ;
MATRIX § undefined if 4 is not a square matrix. j

Example 11 The following are examples of matrices and their traces.

-1 2 7 0

fy d13 4dp 3 5 g 4
A=|ay ay axn B= I 2 7 -3
31 d3z 3z 4 -9 i 0

tr(d) = ay; +ayy +ay; rB)=—-1+5+7+0=11

EXERCISE SET 1.3
1. Suppose that 4, B, C, D, and E are matrices with the following sizes:
A B C D E
4 X 5) (4 X 5) (5x2) 4 x2) (5x4

1.3 Muirices and Muatrix Operations / 35

Determine which of the following matrix expressions are defined, For those which are de-
fined, give the size of the resulting matxix.
(a) BA (b)) AC+ D {c) AE+ B
(&) E(A +B) (f) E(4C) (g) E™4

(d) AB + B
(h) (47 + E)D

. Solve the following matrix equation for a, b, ¢, and d.

a—b b+e _ 8 1
3d+c 2a—-4d| |7 6

Consider the matrices

1

Compute the following (where possible).

30 15 2 6 1 3
4 -1 1 4 2
A=| -1 2f, B= , €= , D=l-1 0 1|, E=;-1 1 2
‘ 0 2 i 15
3 2 4 4 1 3

(a) D+E (byD-—E (c) 54 {dy —7C
(e 2B—-C (fY4E—-2D (g) —3(D+2E) 44
(i) te(D) (i) w(D —3E) (k) 4 1r(7B) (1) tr(d)
. Using the matrices in Exercise 3, compute the following (where possible).
(@) 24+ C (b) DY — ET (©) (P-EY (d) BY + s5CT
() $5CT -1 (Hy B—8T (g) 2E7 - 3D7 (hy QET — 3DTYT
., Using the matrices in Exercise 3, compute the following (where possible),
(a) AB (b) B4 (¢} 3E)D (d) 4B)C
(e) A(BC) (f) cct (g) (DAY () (C"ByA™

() t(DDTY () w(@ET D) (k) tr(CTAT + 2ET)

. Using the matrices in Exercise 3, compute the following (where possible).

(c) (—AC)T+ 5DT

(a) (2D% — E)
(f) DTET — (ED)YT

(d) (BAT - 20)7

(b) (4B)C + 2B.
(e) BHCCT — AT4)

. Let
i -2 7 6 -2 4
A=16 5 4 and B=10 1 3
0 4 9 7 7 5

Use the method of Example 7 to find
(a) the first row of 4B (b) the third row of 4B
(d) the first column of B4 (&) the third row of A4

{c) the second column of 458
(f) the third column of 44

. Let 4 and B be the matrices in Exercise 7.

(a) Express each column matrix of 4B as a linear combination of the column matrices of 4.
(b) Express each column matrix of B4 as a linear combination of the column matrices of B.

. Let
a; dig Din
y=[n » oyl and 4= O fan
a;nl ar;:Z Tt Gy

Show that the product y4 can be expressed as a combination of the row matrices of 4 with
the scalar coefficients from y.
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10. Let A and B be the matrices in Exercise 7.

{a) Use the result in Exercise 9 to express each row matrix of 4B as a linear combination

of the row matrices of B.

(b} Use the result in Exercise 9 to express each row matrix of B4 as a linear combination

of the row matrices of 4.

11. Let C, D, and E be the matrices in Exercise 3. Using as few computations as possible,

determine the entry in row 2 and column 3 of C(DE).

(a) Show that if AB and BA are both defined, then 4B and BA are square mairices.

12.
(b) Show that if 4 is an m X n matrix and A(BA} is defined, then B is an # X m matrix.
13. In each part find matrices 4, x, and b that express the given system of linear equations as a
single maltrix eguation 4x = b.
(a) 2x; = 3x, + 5x3= 7 (b) 4x, —3x;+ xy=1
Ox;— X3+ x3= 1 Sx,+ x, ~8x,=3
X+ 5x+4x= 0 2x 5%+ 90— x, =0
3x, = X+ Txy=2
14, In each part, express the matrix equation as a system of linear equations.
3 { 5 ) 3 -2 0 LY w 0
437"1_1(5)502—2;:_0
(a)215x‘*_4 5 1 4 7liy| o
B " 2 5 1 6|z] |o

15. If 4 and B are partitioned into submatrices, for example,

then A8 can be expressed as
y I:AIIBEI + A8, =A11312‘*A12322]

Az:Bll +A22321 ! AZlBlZ +A22 22

provided the sizes of the submatrices of 4 and 8 are such that the indicated operations can
be performed. This method of multiplying partitioned matrices is called block multiplication.
In each part compute the product by block muliiplication. Check your results by multiplying

directly.
-1 211 3] 2! li 4
(@ 4= 0 -3 L4 2 B= ::3-____5__5_'_;2_
e 7
' - . 0 3 -3
_ . T2 1) 47
(b)A:”"m“c})""l;_"'i"i"i' p=| 2 : 2
s 6| J At
- P [ 0 3 (-3
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also has a row of zeros.
that ifkd = 0, then k=0 or d = 0.

1 i i=j
0 if iy

Show that A7 = I = A for every n X n matrix 4.

2 -4
3 ~1 0 -3l o0 2
@1, ; 5} I -3 5 ®)
2 1 4
[1 0 0} 0 0 3 3
0 1 0! o oll-1 4
@00 11 0 ol 1 s
' o 0 of 2 of Tz =%
0 0 oi-t 2] 1 6

(b) Find a similar result involving a column of zeros.

d
-1 2 1153 2
C(@d= __me___é____ii 21, B= _“:g _______ L
15 6 1 1] 0

I~ 1

-1 2 1 5] 23
®a=| 0 -3 4 2| p={731
___________________ 7;

| 1 s 6 1} i

| 0

1.3 Matrices and Matrix Operations / 37

16. Adapt the method of Exercise 15 to compute the following products by block multiplication,

_17 In each part determine whether block multiptication can be used to compute AB from the
given partitions If so, compute the product by block muttiplication.

18 (a) Show that if 4 has a row of zeros and B is any matrix for which AB is defined, then 4B

- 19. Let 4 be any m X n matrix and let ¢ be the m X # matrix each of whose entries is zero. Show

20. Let / be the n X » matrix whose entry in row 7 and column Jis

21, In each part find a 6 X 6 matrix [a, ;] that satisfies the stated condition, Make your answers
as general as possible by usmg letters rather than specific numbers for the nonzero entries.
(a) a;=0 if i#j (b) ay if 1> (Yay=0 if i<j (d)a;=0 if |i—j|>1

22. Find the 4 X 4 matrix 4 = [a;;] whose entries satisfy the stated condition.

. i 1 it i—jl>1
(@ a,=i+; (b) a,;=i""! c) a;; = 4
: v / © ay -1 if fi—j=1
7 23. Prove: If 4 is an m X n matrix, then
A4y =tr(d"4) = s
where 5 is the sum of the squares of the entries of 4.
/

3 Matrices and Matrix Operations / 37
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i i following.
24. Use the result in Exercise 23 to prove the ~ ~
(2) If A is an m X n matrix such that 44" = 0 or A74 =0, then 4 = 0.

(b) If 4 is an n X n matrix such that 4 = AT and 42 =0, then 4 = 0.

1.4 INVERSES; RULES OF MATRIX ARITHMETIC

PROPERTIES OF
MATRIX
OPERATIONS

In this section we shall discuss some properties of the arithmetic operations on matrices.
We shall see that many of the basic rules of arithmetic for real numbers also hold for

matrices but a _few do not.

For real numbers a and b, we always have ab = ba, which is called the commutatz:ve
law for multiplication. For matrices, however, 48 and B4 need not be e:_:jual. Equality
can fail to hold for three reasons. It can happen, for'example,. that AB is deﬁned but
B4 is undefined. This is the case if 4 is a 2 X 3 matrix and B isa3 X 4 marix. 'Also,
it can happen that AB and BA are both defined but _han? different sizes. This is the
situation if 4 is a 2 X 3 matrix and B is a 3 X 2 matrix. Finally, as Example I shows,
it is possible to have 4B BA even if both 4B and BA are defined and have the same

size.

Example 1 Consider the matrices

-1 0] 1 2
= B:
4 [ 2 3 [3 OJ
-1 =2 3 6]
= BA =
AB, [11 4 [—3 0

Although the commutative law for multiplication is not valid in matrix arithmetic,
many familiar laws of arithmetic are valid for matrices. Some of the most important
ones and their names are summarized in the following theorem.

Multiplying gives

Thus, AB# BA.

Theorem 1.4.1. Assuming that the sizes of the matrices are such that the indicated
operations can be performed, the following rules of matrix arithmetic are valid,

(@) A+B=B+4 (Commutative law for addition)
B A+BrOY=A+B+C {(Associative law for addition)
! (&) ABBCY={4RC (Associative law for multiplication)
(d)y AB+ C)=AB + AC (Left distributive law)
(&) B+ C)A=BA+CA (Right distribuﬁt:e faw)
(fYAB—-C)y=4B - AC (/) (a+BHC=aC+ bC
(g) B—C)A=B4—C4 (0 (a—b)C=aC-bC
() a(B+ C)=aB +aC ) abC) = (ab)C
() aB-C)=abac L mesosEncEies

1.4 Inverses; Rules of Matrix Arithmetic / 39

To prove the equalities in this theorem we must show that the matrix on the left
side has the same size as the matrix on the right side and that corresponding entries on
the two sides are equal. With the exception of the associative law in part (¢), the proofs
all follow the same general pattern, We shall prove part (d) as an illustration. The proof
of the associative law, which is more complicated, is outlined in the exercises.

Proof (d). We must show that A(B + C) and 4B + AC have the same size and that
corresponding entries are equal. To form A(B -+ (), the matrices B and € must have
the same size, say m X n, and the matrix 4 must then have m columns, 50 its size must
be of the form » X m. This makes A(B + C) an r X n matrix. It follows that AB + AC
is also an # X 7 matrix and, consequently, A4(B + C)} and AB + AC have the same
size. :
Suppose that 4 = [ g, ;1 B =[b;], and C=[¢;]. We want to show that corre-
sponding entries of A(B + C) and A8 + AC are equal; that is,

[4(B + C)]z‘j =[{4B + AC}U

for all values of / and j. But from the definitions of matrix addition and matrix multi-
plication we have

[4(B + C)]ij = ail(blj + C]j) + aiz(sz teoy)y e+ aim(bmj+ ij)
= (anbi;tapby+ - + BBy ) + (ane; + apey, + - + By Cpy )
= [AB],-J- + [AC',-j} =[AR +4CY;

REMARK. Although the operations of matrix addition and matrix multiplication were
defined for pairs of matrices, associative laws (b) and (c) enable us to denote sums and
products of three matrices as 4 + B + C and ABC without inserting any parentheses.
This is justified by the fact that no matter how parentheses are inserted, the associative
laws guarantec that the same end result will be obtained. In general, given any sum or
any product of matrices, pairs of parentheses can be inserted or deleted anywhere
within the expression without affecting the end result. '

Example2 As an illustration of the associative law for matrix multiplication, consider

I 2
4 3 1 0
i el
2
0 1 2 1 3

Then
i 2 8 5
4 3 4 311 o 10 9
AB=|3 4 [2 1]— 20 13 and BCM[Z 1][2 3]_[4 3]
0 1 2 1
Thus,

8 5 i o 18 15
4B)C=1{20 13 [ ]: 46 39
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and
12 18 15
ABCY=|3 4 [12 g}: 46 39
0 1 4 3

50 (ABYC = A(BC), as guaraniced by Theorem 1.4.1c.

A matrix, all of whose entries are zero, such as

[00] ggg [0000]
0 0
0 0 0 o 00 0

is called a zere matrix. A zero matrix will be denoted by 0; if it is important to em-
phasize the size, we shall write 0,, ., for the m X r zero matrix.

If A is any matrix and 0 is the zero matrix with the same size, it is obvious that
A+0=0+4=4 The matrix 0 plays much the same role in these matrix equations
as the number 0 plays in the numerical equations a + 0 =0 + a = a.

Since we alfeady know that some of the rules of arithmetic for real numbers do
not carry over to matrix arithmetic, it would be foolhardy to assume that all the prop-
erties of the real number zero carry over to zero matrices. For example, consider the
following two standard results in the arithmetic of real numbers.

ZERO MATRICES

-

(0]

oo s A

0

¢ If ab = ac and a#0, then b = ¢. (This is called the cancellation law.)
e If ad = 0, then at least one of the factors on the left is 0.

As the next example shows, the corresponding results are not generaliy true in matrix
arithmetic, .

Example 3 Consider the matrices
0 1 11 25 3 7
P FI I O B o R P

- 3 4
. AB=AC=
mescs? ]

Although 4 # 0, it is incorrect to cancel the 4 from both sides of the equation AB = AC
and write B = . Thus, the cancellation law fails to hold for matrices. Also, 4D = 0,

yetA#0and D##0.

Here

In spite of the above example, there are a number of familiar properties of the real
number 0 that do carry over to zero matrices. Some of the more important ones are

summarized in the next theorem. The proofs are left as exercises.
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IDENTITY
‘MATRICES

1.4 Inverses; Rules of Matrix Arithmetic / 41

| Them em 1.4, 2 Assummg that the sizes af the matrices are Such that tke mdtcated
 oper ations can be performed, the following rules of matrix arithmetic are valid.
(@) A+0=0+4=4

(B A—4=0

(c) 0~A=—4

(d) AO 0 OA 0

Of special interest are square matrices with 1’s on the main diagonal and 0’s off the
main diagonal, such as

Lo 1 00
o 1P 01 0f,
0 0 1

0

A matrix of this form is called an identity matrix and is denoted by I. If it is important
to emphasize the size, we shall write I, for the n X n identity matrix.
If A is an m X n matrix, then, as illustrated in the next example,

Al,=4  and I, A=4

s and s0 on.

[t Y <. J Y
L e R S
Ll = B -
—_ o o o

0

Thus, an identity matrix plays much the same role in matrix arithmetic as the number
I plays in the numerical relationships a1 =1-a = a.

Example 4 Consider the matrix

ay g2 dp3
A ==
_ 21 9y Ay

IA“[I Ollan dp a; 4y @ ag ]| 4
2eL = = o
0 1j19 G2 a3 @21 Hy3 Ay |

. Then

and

G2 43 dp Qa1 Gy Uy |

-

100 -
AI3=[a” a1z 013} 0 1 0 zl_a“ 12 dp y
¢ 0 1

As the next theorem shows, identity matrices arise naturally in studying reduced
row-echelon forms of square matrices.

: Theorem 1.4.3. If R is the reduced row-echelon form of an n X n matrix A then
ezther R has a row of zeros or R is the zdentzty matrzx I

,:? Matrices and Matrix Operations / 37




42 / Systems of Linear Equations and Matrices 1.4 Inverses; Rules of Matrix Arithmetic / 43

Proof. Suppose that the reduced row-echelon form of 4 is Thus,
Firuo Pz 0 1 00
Fap P2 't Py BA#=I=(0 1 0
=l ' 00 1
P ‘ . . | |
i Tz " PROPERTIES OF It is reasonable to ask whether an invertible matrix can have more than one inverse.
Either the last row in this matrix consists entirely of zeros or it does not. If not, the INVERSES The next theorem shows that the answer is no—an invertible matrix has exactly one
inverse,

matrix containg no zero rows, and consequently each of the » rows has a leading entry
of 1. Since these leading 1’s occur progressively further to the right as we move down
the matrix, each of these 1’s must occur on the main diagonal. Since the other entries
in the same column as one of these 1°s are zero, R must be £, Thus, either R has a row

§ Theorem 1.4.4, If B and C are both inverses of the matrix A, then B = C, !

I L L L e e e e e B ey i s e e e 0 e et e e e s e ek

of zerosor R=1,. : .
e e e e Proof. Since B is an inverse of 4, we have BA = I. Multiplying both sides on the right

INVERSE OF A ¢ Definition, If 4 is a square matrix, and if a matrix B of the same size can be by ' gives (BA)C = IC = C. But (B4)C = B{(AC) = Bf =B, so that C = B.

. found such that AB = BA = I, then 4 is said to be invertible and B is called an

MATRIX
As a consequence of this important result, we can now speak of ““the”’ inverse of
an invertible matrix, If 4 is invertible, then its inverse will be denoted by the symbol

A~ L Thus,

| inverse of A.

Iixample 5 The matrix

2 =5 - -
B=E ;] is an inverse of Az[_l 3:' AA=l=F and A" Y=T

The inverse of 4 plays much the same role in matrix arithmetic that reciprocal ¢ ~?

since . . . . - —
plays in the numerical relationships aa™' =1 and a " la = 1.
4B = { 2 —5] [3 5jl » [1 0} ~ 7 In the next section we shall develop a method for finding inverses of invertible
-1 3T 2 01 matrices of any size; however, the following theorem gives conditions under which a
and 2 X 2 matrix is invertible and provides a simple formula for the inverse.

Theorem 1.4.5. The matrix %

e

is invertible if ad — be w0, in which case the inverse is given by the formula ,

w2

Example 6 The matrix

1 4 0
A=1{2 5 0 ) ) i
Pe - 1 d —b ad—be  ad-—bec i
is not invertible. To see why, let - °|- C a |
bu B B : Tad—be  ad—be |
P b b33“ | Proof. We leave it for the reader to verify that 44~ '=L and 4 "4 =L,.

| Theorem 1.4.6. If 4 and B are invertible matrices of the same size, then:

by by b |0 0 g()AB' , b
by by by ||O]=]0 : i a z{ invert: e._
by by by |l0] Lo Uy =sTAT

;5 Matrices and Muatrix Operations / 37
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POWERS OF A
MATRIX

Proof. If we can show that (4B)(B 14~ )= (B"147")4B) =1, then we will have
simultancously shown that the matrix 4B is invertible and that (4B) ™ '=B~147".
But (ABYB~'4™ ) = A(BB~ WA ' =AI4" ! =44~ = I A similar argument shows

that (B~ 14~ 1)(4B) = I.

Although we will not prove it, this result can be extended to include three or more
factors; that is,

A product of any number of invertible matrices is invertible, and the inverse of the

product is the product of the inverses in the reverse order.

Example 7 Consider the matrices

1 2 302y . 7 6
[ el et

Applying the formulia in Theorem 1.4.5, we obtain

~ 3 =2 N I —1 [ a4 -3 .
A‘=[-1 | | ] “D7 =] ]

Also,
1 1 -1 3 ~2] 4 -3
B4 = =
[ [ B |

Therefore, (AB8) ™' =B~ 14! as guaranteed by Theorem 1.4.6.

Next, we shall define powers of a square matrix and discuss their properties.

E Definition. If 4 is a square matrix, then we define the nonnegative iriteger powers |
. of A to be

A =T A" = A4 -4 (n>=0)
!
» n factors
Moreover, if 4 is invertible, then we define the negative integer powers to be - ;

A=y =47 A
- \""""_—W——'J
n factors

Because this definition parallels that for real numbers, the usual laws of exponents hold.
(We omit the details.)

. POLYNOMIAL
EXPRESSIONS
- INVOLVING

- -MATRICES
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Theorem L.4.7. [f 4 is a square matrix and v and s are integers, then

ArAs = Ar-i—s

(AI')S s Ars

The next theorem provides some useful properties of negative exponents.

Theorem 1.4.8. If 4 is an invertible matrix, then:
(@) A Vis invertible and (47 1y" ' = A.

| (b) 4" is invertible and (A4") "' = (4" Y forn=0, 1,2, : ..

’ (¢} For any-nonzero scalar k, the matrix kA is invertible and (kA)~" = i 471

Proof

(a) Since 44 “l=A""'4 =1, the matrix 4™ is invertible and (4~ 1)~ ! = 4,
(b} This part is left as an exercise.
(c} If kis any nonzero scalar, results (/) and (m) of Theorem 1.4.1 enable us to write

1 1 1
A _A_l == =l -1 S
(c)(k ) k(kA)A (kk)AA (Oi=1
- 1
Similarly, (};A“’) {kA4) = I so that k4 is invertible and (kd) ! = MIE AL

Example 8 Let 4 and 4! be as in Example 7, that is,

1 2 3 -2
4= -1 =
L 3} and A4 [ml 1]

A3m[1 2][1 2:”:1_ 2] 11 30

I o3j1 34|t 3| {15 41

A‘3x(A“l)32[ 3 """2][ 3 ‘2“ 3 “2]:[ 41 —30}
-1 L} -1 -1 1 -15 11

If A4 is a square matrix, say'm X m, and in

Then

7 pX)=astax+---+a,x" (1)
is any polynomial, then we define
pA)=apgltad+ - +a,d"

where [ .is the m X m identity matrix. In words, p(4) is the m X m matrix that results
when 4 is substituted for x in (1) and a, is replaced by a,/.

3 Matrices and Matrix Operations / 37
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THE TRANSPOSE

Example 9 I

—1
px)=2x*-3x+4 and A=[ 0 :j:l

. 2
: -1 2 -1 2 10
w2t svar=2 "L 2] a0 2a) ]
m[z 8]_[—3 6 +[4 0]_ 9 2]
1o 18 0 9 0 4| o 13

The next theorem lists the main properties of the transpose operation.

then

& Theorem 1.4.9. If the sizes of the matrices are such that the stated operations can
| be performed, then )

(@ ())T=4

(b)) (A+B)T=A"+ BT and (4~ B) =4T - B"

L () (kA)T = kAT, where k is any scalar

a (d) (AB)T=BT4"

Keeping in mind that transposing a matrix interchanges its rows and columns,
parts (), (b), and (c) should be self-evident. For example, part fq) states that inter-
changing rows and columns twice leaves a matrix unchanged; part (b) asserts that
adding and then interchanging rows and columns yields the same result as first inter-
changing rows and columns, then adding; and part (c) asserts that multiplying by a
scalar and then interchanging rows and columns yields the same result as first inter-
changing rows and columns, then multiplying by the scalar. Part {d) is not so obvious,

50 we give its proof.

Proof (d). Let
A= {ar'j]mxr and B = {bij]an
so that the products 4B and B747 can both be formed. We leave it for the reader to

check that (4B8)T and B7AT have the same size, namely n X m. Thus, it only remains
to show that corresponding entries of (4B8)7 and BYAT are the same; that is,

(@B7) = @4", @
if
Applying Formula (8) of Section 1.3 to the left side of this equation and using the
definition of matrix multiplication, we obtain

((BYT), = 4By = by + @b+ + b ®

To evaluate the right side of (2) it will be convenient to let a};and b}, denote the ijth
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entries of 47 and B7, respectively, so

’

ay=a; and bl = by

From these relationships and the definition of matrix multiplication we obtain
TATY o
(BTATY, = biyal, + Bpay, + - + bl al,
= byay + byap + -+ ba,
= ajlbli + ajzbzi +ot ajrbri
This, together with (3), proves (2). *

Although we shall not prove it, part (d) of this theorem can be extended to include
three or more factors; that is, :

The' transpose of a product of any number of matrices is equal to the product of
their transposes in the reverse order.,

REMARK, Note- the similarity between this result and the result following Theorem
1.4.6 about the inverse of a product of matrices.

The .following theorem establishes a relationship between the inverse of an invertible
matrix and the inverse of its transpose.

1
£

; Theorem 1.4.10. If 4 is an invertible matrix, then A7 is also invertiblé ana‘ i

Proof. We can prove the invertibility of 47 and obtain (4) by showing that
AT(Aéi)Tz (A—I)TAT=I
But from part () of Theorem 1.4.9 and the fact that /7 = I we have
AT(A“I)Tm (A‘IA)TEIT=I
(A4 = (A4~ YT = [T=]

which completes the proof,

Example 16 Consider the matrices

S R

Applying Theorem 1.4.5 yields

a3 1 -2
i I IR P

As guaranteed by Theorem 1.4.10, these matrices satisfy (4).

gﬁ’ Matrices and Muatrix Operations / 37
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EXERCISE SET 1.4

1.

10.

. Use Theorem 1.4.5 to compute the inverses of the following matrices.

Let
2 ~1 3 g8 -—-3 -5 0 -2 3
A= ) 4 51, B=|0 1 21, C=j1 7 41, a=4, b= -7
-2 1 4 4 -7 6 3 05 9
Show that

(@ A+EB+Cy=Ad+B+C  (b) ABC=4(BC) (c) (a+b)C=aC+bC
(D a(B-C)y=aB—aC

. Using the matrices and scalars in Exercise 1, show that

(a) a(BC) = (aB)YC = BaC)  (b) AB—~C)=dAB—AC  (c} (B+ C)A=Bd+ CA
(d) a(bC) = (ab)C :

. Using the matrices and scalars in Exercise I, show that

@ @D)T=4 (b)) d+B)T=4T+B" (¢} @C)T=aCT  (d) (4B)7=BTA"

s

31 2 -3 2 0
= = C =
I IS R A
Verify that the three matrices 4, B, and € in Exercise 4 satisfy the relationships AB)~1=
B 4 'and (4BC) " '=C B4

Let 4 and B be square matrices of the same size. Is (4B)* = A?B? 4 valid matrix identity?
Justify your answer.

. In each part use the given information to find 4.

a2 -t -3 7
(@ 4 ‘-[3 5] (b) (74) ﬁ[ 1 _2]

ey [-3 -1 o[- 2
(©) (547) g{ s 2] (d)(1+2A)‘_[ A 5]

. Let 4 be the matrix

)

Compute 43, 477, and A% — 24 + L.

. Let 4 be the matrix

3 1}
2 1
In each part find p(4).
(2) pxy=x—2 (o) py=2x2—x+1 (©) pr)=x*—2x+4

Let p,(x} =x% = 9, po(x) =x + 3, and py = x — 3,
{a) Show that p,(4) = p,(A)p,(4) for the matrix 4 in Exercise 9.
{b) Show that p () = p,(d)p,(A) for any squars matrix 4.

1.4 Inverses; Rules of Matrix Arithmetic / 49

. Find the inverse of

cos @ sind
—sinf cosé

. (2) Find 2 X 2 matrices A and B such that (4 + B)?# 4> + 24B + B~

{b) Show that if 4 and B are square matrices such that A8 = B4, then
{d+ By = 4%+ 24B + B*

{c) Find an expansion of (4 + B)? that is valid for all square matrices 4 and B having the
same size.

. Consider the matrix

a,; 0 & - O
0 a5 0 -+ 0
A=1. . .
o 0 0 - a,

whete a, a5, * d,, 7 0. Show that 4 is invertible and find its inverse.

i

, Show that if a square matrix 4 satisfies 42 — 34 + /=0, then 47! = 3] — 4.

. (a) Show that a matrix with a row of zeros cannot have an inverse.

(b) Show that a matrix with a column of zéros cannot have an inverse.

. Is the sum of two invertible matrices necessarily invertible?
. Let 4 and B be square matrices such that 48 = (. Show that if 4 is invettible, then B = 0.
, In Theorem 1.4.2 why didn’t we write part (d) as A0 = 0 = 047

. The real equation &®> =1 has exactly two solutions. Find at least eight different 3 X3

matrices that satisfy the matrix equation 4% = I. [Hint. Look for solutions in which all the
entries off the main diagonal are zero.]

. (a) Find a nonzero 3 X 3 matrix 4 such that 47 = 4.

(b) Find a nonzero 3 X 3 matrix A such that 47 = — 4.

. A square matrix 4 is called spmmetric if A7 = A and skew-symmetric if AT = — 4, Show

that if B is a square matrix, then
(2) BAT and B + BT are symmetric  (b) B — BT is skew-symmetric

. If 4 is a square matrix and # is a positive integer, is it true that (4")7 = (47)"? Justify your

answer,

. Let 4 be the matrix

1 01
110
0 1 1

"Determine whether 4 is invertible, and if so, find its inverse. [Hinr. Solve AX = I by equat-

ing corresponding enfries on the two sides.]

. Prove:

(#) part (b) of Theorem 1.4.1 (b) part (i} of Theorem 1.4.1 {c) part {m) of Theorern 1.4.1
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25, Apply parts (d) and (m) of Theorem 1.4.1 to the matrices 4, B, and (~ 1)C to derive the
result in part (f).
26. Prove Theorem 1.4.2.

A4S — r+5 FYS AF‘S-
i laws of exponents 4"4° = 4" and (4") . o
2 E;gn;if;t?lfatag/i is afny square matiix, these laws are valid for ail nonnegative infeger

frand s. o
(b) E;Icl)lxzst;atri?A is invertible, these laws hold for all negative integer values of and 5.

28. Show that if 4 is invertible and # is any nonzero scalar, then (k4)” = k"4" for all integer
values of n.

if 4 is i i = AC, then B=C,
. Show that if 4 is invertible and 4B , .
» Ea‘tl))) Explain why part (a) and Example 3 do not contradict one another.

30. Prove part (c) of Theorem 1.4.1. [Hint. Assume that 4 ismXn, Bis n>< ﬁ, anfiBg]m.
. X g. The ijth entry on the left side is l,-jsaﬂ[BC}U+a,2[BCj]l2{++AB] Cai"verif,,y}
{:nd the ijth entry on the right side is r;; = [AB]ycy; + [4Blpeq; +- [AB ey
that ;; = ry;.]

-1
1.5 ELEMENTARY MATRICES AND A METHOD FOR FINDING A

] / ] invertible
In this section we shall develop an algorithm for ﬁnd{ng thfa inverse of an inver
matrix, and we shall discuss some basic properties of invertible matrices.

. e R N
! Definiti trix is called an elementary matrix 1
TME ¢ Definition. AnnXn ma : ‘ >
il\gll;\?ig{g:? o | from the 1 X n identity matrix I, by performing a single elementary r

i
: .

Example ! Listed below are four elementary matrices and the operations that produce

E them.
H 1000 1 0 3 100
b0 0001 010 010
0 -3 0010 00 1 0 0 I
‘ 01 00
| i iply th
Multiply the Interchange the Add 3 times ] If\;:ttt:g \3 Ofe
Ic)l w of second and fourth the third row o frst ro
| ;e%c;n_rg rows of Iy. I to the first row, 3y by 1.
; A ,

When a matrix 4 is multiplied on the left by an e!.ementary matrix Eilth? ?fﬂ:,:;t nlS
to perform an clementary row operation on A. This is the content of the following

| ' theorem, the proof of which is left for the exercises.

1.5 Elementary Matrices and o Method for Finding 4= /5y

] Theorem 1.5.1. If the elementary matrix E results Jrom performing a certain row
! operation on 1, and if A is an m X n matrix, then the product EA is the matrix that
| results when this same row operation is performed on A.

WP o

Example 2 Consider the matrix

™
il
J (S Ty
!
——
[SE NN
oy W

and consider the elementary matrix

1 00
E=l0 1 ¢
3.0 1

which results from adding 3 times the first row of 13 to the third row. The product £4
is

1 0 2 3
FE4=12 -1 3 6
4 4 10 9

which is precisely the same matrix that results when we add 3 times the first row of 4
to the third row.

REMARK. Theorem 1.5.1 is primarily of theoretical interest and will be used for de-
veloping some results about matrices and systems of linear equations. Computationally,

it is preferable to perform row operations directly rather than multiplying on the left by
an elementary matrix.

If an elementary row operation is applied to an identity matrix J to produce an
elementary matrix £, then there is a second row operation that, when applied to £,
produces ! back again. For example, if £ is obtained by multiplying the ith row of J by
4 nonzero constant ¢, then I can be recovered if the ith row of £ is muitiplied by 1/c.
The various possibilities are listed in Table 1.

TABLE 1

Row Operation on I Row Operation on E
That Produces £ That Reprodnces I

Multiply row i by e#0 Multiply row i by 1/¢

Interchange rows { and 7 Interchange rows ¢ and J

Add ¢ times row 7 to row j Add — ¢ times row i to row J
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The operations on the right side of this table are called the inverse operations of the
corresponding operations on the left.

Example 3 In each of the following, an elementary row operation is applied to the
2 X 2 identity matrix to obtain an elementary matrix £, then £ is restored to the identity

matrix by applying the inverse row operation.
10 1 0 I 0
._-..—.9 _%
01 0 7 0 1

Multiply the second Multiply the second
row by 7. row by .

R ) I

Tnterchange the first Interchange the first
and second rows. and second rows.

T i S M

Add 5 times the second Add -5 times the sec-
row to the first. ond row to the first.

The next theorem gives an important property of elementary matrices.
‘ Theorem 1.5.2. Every elementary matrix is invertible, and the inverse is also an |
( elementary matrix.

Proof. IfE is an elementary matrix, then E results from performing some row operation
on 1. Let E, be the matrix that results when the inverse of this operation is performed
on f. Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the

effect of each other, it follows that
EE=I  and EE, =1

Thus, the elementary matrix £, is the inverse of £.

The next theorem establishes some fundamental relationships between invertibil-
ity, homogeneous linear systems, reduced row-echelon forms, and elementary matrices.
These results are extremely important and will be used many times in later sections.
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Theorem 1.5.3. If 4 is an n X n matrix, then the following statements are equivalent,
. that is, all true or all false.

. (@) A s invertible.

. (B) Ax = 0 has only the trivial solution.

- (¢} The reduced row-echelon form of A is I

(d) A is expressible as a product of elementary matrices.

Progf. We shall prove the equivalence by establishing the chain of impiibations:
(@ =)= ()=(d)=>(a).

(a)::‘»(b)f Assume A4 is invertible and let X, be any solution of Ax = 0; thus, 4x, = 0.
Mulslp}ymg both sides of this equation by the matrix 41 gives 4~ }(4xy) = 4~10, or
(A7 A)xy =0, or Ixg = 0, or X, = 0. Thus, Ax = 0 has only the trivial solution.

{&)=>(c): Let 4x = 0 be the matrix form of the system
ayX) T apx, o +an,x, =0

alel + azzxz R aznxn = 0

4y

AaXy tapx, -+ a,x =0

HR-"h

an_d assume that the system has only the trivial solution. If we solve by Gauss—Jordan
elimination, then the system of equations cortesponding to the reduced row-echelon
form of the angmented matrix will be

X =0
X =0
@
x, =0
Thus, the augmented matrix

ay @y " oap, 0

ay dyp 4y, O

LI T 0

for (1) can be reduced to the augmented matrix

1 00 00
01 0 0 0
o611 .- 00
0 0 0 1 0
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for (2) by a sequence of elementary row operations. If we disregard the last column (of

zeros) in each of these matrices, we can conclude that the reduced row-echelon form
of dis 1,

(cy=s(d). Assume that the reduced row-echelon form of 4 is 7, so that 4 can be
reduced to I, by a finite sequence of elementary row operations. By Theorem 1.5.1 each

_of these operations can be accomplished by multiplying on the left by an appropriate

elementary matrix. Thus, we can find elementary matrices £\, £, . . ., Ey such that

By Byl A=1, 3

By Theorem 1.5.2, £, E,, .. ., E, are invertible. Multiplying both sides of Equation
(3) on the left successively by E; ', ..., E; ', E;"! we obtain

A=EC'E; B =EC BT B <

By Theorem 1.5.2, this equation expiresses 4 as a product of elementary matrices.

(dy=(a); If4 is a product of elementary matrices, then from Theorems 1.4.6 and 1.5.2

the matrix 4 is a product of invertible matrices, and hence is invertible.

If a matrix B can be obtained from a matrix 4 by performing a finite sequence of

- elementary row operations, then obviously we can get from B back to 4 by performing

the inverses of these elementary row operations in reverse order. Matrices that can be
obtained from one another by a finite sequence of elementary row operations are said
to be row equivalent. With this terminology it follows from parts (a) and {c) of Theorem
1.5.3 that an # X n matrix 4 is invertible if and only if it is row equivalent to the

n X n identity matrix.

As our first application of Theorem 1.5.3, we shall establish a method for determining
the inverse of an invertible matrix. Inverting the left and the right sides of {4) yields
A1 =E, -+ E,E,, or equivalently, :

AV =E EE, &)

which tells us that 4~ can be obtained by multiplying I, successively on the left by
the elementary matrices £\, £,, . .., E,. Since each multiplication on the left by one
of these elementary matrices performs a row operation, it follows, by comparing Equa-
tions (3) and (5), that the sequence of row operations that reduces 4 to I, will reduce
I, to A~". Thus, we have the following result: ‘

To find the inverse of an invertible matrix A, we must find a sequence of elementary
row operations that reduces A to the identity and then perform this same sequence
of operations on I, to obtain A",

A simple method for carrying out this procedure is given in the following example.
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Example 4 Find the inverse of
1 23
A=|2 5 3
1 0 8

Solution. We want to reduce 4 to the identity matrix by row operations and simulta-
neously apply these operations to I to produce 4 ™!, To accomplish this we shall adjoin
the identity matrix to the right side of 4, thereby producing a matrix of the form

41 1]

then we shall apply row operations to this matrix until the left side is reduced to 7; these
operations will convert the right side to 4!, so that the final matrix will have the form

[I14°]
The computations are as follows:
12 3 E 1 0 0]
25 3 0 1 0
r 0 81 0 0 1]
f
1 2 3 i 1 0 0 We added —2 times the first
0 1 -3 i -2 1 0 row to the second angI —} times
A ) 5 E -1 0 1_ the first row to the third.
1 2 3 1 0 0]
| We added 2 times the
0 I -3 i -2 1 0 second row to the third,
| 0 0 -1 : -5 2 1
[t 2 -3¢ 1 0 0] e
e multiplied the
0 1 =3 i =2 1 0 third row by —1.
o o 1 5 -2 —1] .
[t 2 0} -14 6 3] We added 3 times the third
0 1 0 i 13 -5 =3 Tow to the second and - 3 times
] 0 0 1 i 5 _9 _ lﬁ the third row to the first,
1 G O i —40 {3 9] dod —2 .
| We added —2 times the
0 1 0 ! 13 -5 -3 second row to the first.
o 0 1 5 -2 —1]
Thus,
—40 16 9
A7'=| 13 -5 -3
5 =2 -1
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Often it will not be known in advance whether a given matrix is invertible. If an 200 2
7 X n matrix A4 is not invertible, then it cannot be reduced to J, by clementary row 1o b oo 01 0 0
operations [part (¢) of Theorem 1.5.3]. Stated another way, the reduced row-echelon (0 0 1 Mmoo 19 (2 0010
form of A has at least one row of zeros. Thus, if the procedure in the last example is 000 0 01 0 0 0 1

attempted on a matrix that is not invertible, then at some point in the computations a

row of zeros will occur on the Jeft side. It can then be concluded that the given matrix . Find a row operation that will restore the given elementary matrix to an identity matrix.

is not invertible, and the computations can be stopped. 00 0 1 it 0 % 0
1 0 0
1 0 0100 0 1 0 0
Example 5 Consider the matrix @ [_3 1] (b} 8 (1) g (c) 00 10 (d) o o0 1L 0
1 6 4 1 000 0 0 0 1
A= 2 4 =1 . Consider the matrices
-t 2 3 3 41 8 1 5 34 1
Applying the procedure of Example 4 yields 4d=12 -7 =1|, B=i2 -7 -1} C=[2 =7 -}
- 8 I 5 -
Mo 6 4 E 1 0 0 | ‘ 3 4 1 2 7 3
) 4 —1 ! 0 1 0l . Find elementary mairices £\, £,, Es, and E, such that
¥ . — = = =1
2 s o0 o0 1 @ EA=B (O EB=A4 (@ EA=C () EC-A
| - . In Exercise 3 is it possible to find an elementary matrix £ such that EB = C? Justify your
1 6 4 ! 1 0 0 ‘We added -2 times the first answer.
0 -8 -9 | -2 i 0 row to the second and added
1 M L
| O 8 9 | 1 0 1 the first row to the third. :'In Exercises 5—7 use the method shown in Examples 4 and 5 to find the inverse of the given
| - matrix if the matrix is invertible and check your answer by multiplication.
1 6 4 ! 1 0 0 We added the 2 .
g -8 -9t -2 1 t] second row to 1 4 -3 6 6 -4
ird. b
R T TS S T T B it 5@, 7] @ 45| 90 2
Since we have obtained a row of zeros on the left side, 4 is not invertible. - 1 -1 3 —4 Lo s 6 6 Lo 1
Example 6 In Example 4 we showed that 6. (a) 0 3 ] 2 4 1 rfo 1 1 (dy[2 7 6 @ |~1 11
2 5 —4 —4 2 -9 110 2 17 01 0
123 - :
A=12 5 3 ] - 1
1 0 8 - [+ 4 - V2 3v2 0 1 2 g g
7@ £ % m|~4v2 V2 o0 @[, 3 s o
is an invertible matrix. From Theorem 1.5.3 it follows that the system of equations : R 0 0 1 L3 s 7
+ 2x, + 3x; =0 - B
T T AR T -8 17 2 % o 0 2 0
2x1 +5x2+3x330 (d) 0 % —9 ( ) 1 ) 0 1
e
xy +8x =0 0o 0 0 0 0 -1 3 0
[ -1 13 4 2] 2 1 5 -3

has only the trivial solution.

8. Find the inverse of each of the following 4 X 4 matrices, where k), &;, %3, k4, and k are all

EXERCISE SET 1.5 @ nonzero.
1. Which of the following are elementary matrices? kL O 0 0 0 0 0 & K00 o
| 0 0 I 0 k 0 O 0 &k O 1 k00
— I 0 a b
(a)[l?] (b)[icla] (°)[0\/§] @|o 1 o @lo ok o ®lok ool Do xo
= {00 0 0 0 k& kL 0 0 0 0 0 1 &
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9, Consider the matrix

58]

(a) Find elementary matrices £ and E, such that E?EIA = I
(b) Write 4~ as a product of two elomentary t,n.atnces.
(c) Write 4 as a product of two elementary matrices.

10. In each part perform the stated row operation on

2 -1 0
4 5 =3
1 -4 7

by multiplying 4 on the left by a suitable elementary matrix. Check your answer in each
case by performing the row operation directly on 4.
(a) Interchange the first and third rows.

{b} Multiply the second row by &
{¢) Add twice the second row to the first row.

11. Express the matrix
0 1 7 8
A=} 1 3 3 8
-2 -5 I —~8
in the form A = EFGR, where E, F, and (7 are elementary matrices, and R is in row-echelon
form.

12, Show that if

0 0
A= I 0
b ¢

BOO e

is an elementary matrix, then at least one entry in the third row must be a zero.

13. Show that

B = S e
S R, O R
.o 0O
o6 O o
o O O O

0 0 A

@

is not invertible for any values of the entries.

14. Prove that if A is an m X n matrix, there is an invertible matrix C such that C4 is in reduced
row-echelon form.

15. Prove that if 4 is an invertible matrix and B is row equivalent to 4, then B is also invertible.

16. (a) Prove: If 4 and B are m X n tatrices, then 4 and B are row equivalent if and only if 4

and B have the same reduced row-echelon form, .
() Show that A and B are row equivalent, and find a sequence of elementary row operations

that produces B from 4.

ih DNO— e
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23 1 0 5
19 I 1 4

L

:1‘6 FURTHER RESULTS ON SYSTEMS OF EQUATIONS AND INVERTIBILITY

A BASIC
THEOREM

SOLVING LINEAR
SYSTEMS BY
MATRIX
INVERSION

In this section we shall establish more results aboyt systems of linear equations and
invertibility of mairices. Our work will lead to a lotally new method for solving n
equations in n unknowns.

We begin by proving a fundamental result about linear systems that was anticipated in
the first section of this text.

Themem L.6. 1 Every system of linear equations has ezther HO solutzon.s' exactly
' one salutzon or mﬁmte[y many Solunons

Proof. If Ax =D is a system of linear equations, exactly one of the following is true:
(a) the system has no solutions, (b) the system has exactly one solution, or (c) the
system has more than one solution. The proof will be complete if we can show that the
system has infinitely many solutions in case (c).

Assume that 4x = b has more than one solution, and let x, = x, — x,,, where X)
and x, are any two distinct solutions. Because x; and x, are distinct, the matrix x, is
NONZEr0; MoTeover,

Axy=A(X; — %) =A%, —Ax, =b~b =10
If we now let k& be any scalar, then
AQxy + kxp) = Ax) + A(kxy) = Ax, + k(dx,)
=b+k=b+0=hb

But this says that x, + kx, is a solution of A4x = b. Since x,, is nonzero and there are
infinitely many choices for , the system Ax = b has infinitely many solutions.

‘Thus far, we have studied two methods for solving linear systems: Gaussian elimination
and Gauss—Jordan elimination. The following theorem provides a new method for solv-
ing certain linear systems,

Them em 1.6.2. [f' A is an invertible n X n matrix, then Jor each n X 1 mairix IJ
tke system of equations Ax = b has exactly one Sohmon namely, x= A lb
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Theorem 1.6.4, If 4 is an n X n matrix, then the following are equivalent.
(a} A is invertible.

(B) Ax = 0 has only the trivial solution.

, (¢) The reduced row-echelon form of 4 is I,

. (d) A is expressible as a product of elementary marices.

(e) Ax = b is consistent for every n X 1 matrix b.

| (f) Ax = b has exactly one solution for every n X 1 matrix b.

Proof. Since we proved in Theorem 1.5.3 that (a), (), (¢), and (d) are equivalent, it
will be sufficient to prove that (@)= ()= (&)==>(a).
(@)=>{/): This was already proved in Theorem 1.6.2.

(fy=>(e): This is self-evident: If 4x =b has exactly one solution for every n X1
matrix b, then Ax = b is consistent for every n X I matrix b,

(e)=>(cr): Ifthe system Ax = b is consistent for every n X 1 matrix b, then in particular,
the systems

1 0 0
0 1 0
Ax: 0, sz 0’ . AX'": 0
0 0 1

are consistent. Let X, X,, ..., X, be solutions of the respective systems, and let us
form an » X n matrix C having these solutions as columns. Thus, C has the form

Cﬁi:xl : x2 : e : X}:]
As discussed in Section 1.3, the successive columns of the product AC will be

Ax, Ax,, ., Ax,

Thus,
10 - 0
01 - 0
AC=[Ax, | A%y ¢ ~-- 1 Ax,]=|0 0 - Q=7
00 -1

By part (b) of Theorem 1.6.3 it follows that C=4~". Thus, 4 is invertible.

We know from earlier work that invertible matrix factors produce an invertible
product. The following theorem looks at the converse: It shows that if the product of
square matrices is invertible, then the factors themselves must be invertible.

N
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Theorem 1.6.5. Let A and B be square matrices of the same size. If AB is invertible, ;
then A and B must also be invertible. !

In our later work the following fundamental problem will occur frequently in
various contexts.

E %

A Fundamental Problem. et A be a fixed m X n matrix. Find all m X 1 matrices !
! b such that the system of equations 4x = b is consistent. ;

If 4 is an invertible matrix, Theorem 1.6.2 completely solves this problem by
asserting that for every m X 1 matrix b, the linear system 4x = b has the unique solution
x=A""h. If 4 is not square, or if A is square but not invertible, then Theorem 1.6.2
does not apply. In these cases the matrix b must satisfy certain conditions in order for
4x =b to be consistent. The following example illustrates how Gaussian elimination
can be used to determine such conditions,

Example 3 'What conditions must b,, b,, and b, satisfy in order for the system of
equations

xl +x2+2x3£b1
xl + x3:b2
2x) +xy + 33y = by

to be consistent?

Solution. The augmented matrix is
by

11
10 .
2 1

O =
o O

3

which can be reduced to row-echelon form as follows.

1 1 2 by —1 times the first row was added
0 -1 -1 by by to the second and — 2 times the
0 -1 -1 by —2 bl | first row was added to the third.
['1 1 2 b, ]
The second row was
o 1 1 b-b multiplied by —1.
[ 0 -1 —1 by — 2b, i
[t 1 1 b, ]
The second row was added
0 I 1 by — b, to the third.
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3x, + 2x; =4
3x, + 2x; =2
-\'2+ X3:5

It is now evident from the third row in the mattix that the system has a solution if g
only if &, b,, and b, satisfy the condition

by—by—by=0 or by=b +b,

To express this condition another way, 4x = b is consistent if and onlyifbisa Matyjy ¥ 5, = by

of the form + 2%, = by
by
b=| &,
by +b, 2.

where b and b, are arbitrary.

Example 4 What conditions must b,, b,, and by satisfy in order for the system 4
equations

x; -+ 2x2 4 3X3 =b1

2x1 + 5x2 + 3X3 = bz

xl + SX3 = b3
to be consistent? >
.Y.
Solution. The augmented matrix is —Sx,=b,
1 2 3 b %) + 2% = by
2 5 3 b ) by=1, by=4
108 b 2 by=3
Reducing this to reduced row-echelon form yields (verify) —Txy = b,
1 0 0 —40b + 16b, + 95, 1 +2x=b,
0 I 0 13b; — 5b, — 3b,4 ).by =0, b,=1
0 0 1 Sbl - 2[)2 - b3 - _4: bz -
- I) bZ =
= —-5, 'b2 =

In this case there are no restrictions on by, by, and b;; that is, the given system 4x
has the unique solution

xl = —40b1 -+ lébz + 9b3, x2 = 13b1 - sz - 3b3, .x:; = 551 - 2b2 - b3 (
for all b.

2y =Sk xy =
REMARK. Because the system Ax = b in the preceding example is consistent for all'._
it follows from Theorem 1.6.4 that 4 is invertible. We leave it for the reader to verif
that the formulas in (3) can also be obtained by calculating x =4 b, ' -
¥~y = b,
X -2, = b,

EXERCISE SET 1.6

In Exercises -8 solve the system by inverting the coefficient matrix and using Theorem 1.6.2,

L x4+ x,=2
5%, + 6x, =9

2. 4x; = 3x, = —3 L ox+3tx= 4
2x,—5x,= 9 2%+ 2xy 4 xy = =1
2%+ 3x; + x4 3

Xt 20 txs;=5b
X Xtrn=h
xt+ox = by

33 = Ty 4 2, = 1

X+ Ty + 4y, = by
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— x—2v—3z=0
wt x+dy+d4z=7
w+3x+Ty+09z=4

W= 2x—dy—6z=6

5 x+4+p+ z= 35 6.
x+y—4z=10
—dx+y+ z= 0

8. x4+ 2x,+3x;, =8,
2%+ 5x, + 5x, = b,
3xy b 5x, + 8Bxy = by

{ve the following general systemn by inverting the coefficient matrix and using Theorem

e the resulting formulas to find the solution if
..;blﬁ—l, b2=3, b3=4 (b) blmsi b2=0, b3=0 (C) bl:_l, bzz__l’ b]=3

ve the three systems in Exercise 9 using the method of Example 2.

cises 11-14 use the method of Example 2 to solve the systemns in all the parts simulta-

12 —x +4dx,+ x3=b,
Xy + 9%, — 2x; =5,
6x) + 4x; ~ 8xy = b,

@b =0, by=1, by=0
(0) by=~3, b,=4, by=-5

4. x +3x,+ 5x,= b,
—x; — 2x, =b,
2x; + 5xy + 4x; = by
@ b=1 b=0 b,=—1
byo =0, by=1, by=1
€ by=—1, by=—1, by=0

e method of Exarmple 2 can be used for linear systems with infinitely many solutions, Use
t methad to solve the systems in both parts at the same time,
2 X -2+ xy= -2

B x~2xn+ x= 1
2x; —Sxp+ x3= -1
3x =Ty +2x5= 0

crcises 1619 find conditions that »’s must satisfy for the system to be consistent.

17. Xy = 2%, + Sxy = Iy
4x; — 5x, + 8x; = b,
=3x; + 3%, —3xy; = b,

19. X¥p— Xp+3x; +2x; = b
=2+ x5+ x =5,
—3x + 2%, b 205 — x, =b,

4x, — 3x, + X+ 3x;, =5,
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Consider the matrices

2 1 2 x
A=12 2 -2 and X=ix
3 1 1 : X3

(a) Show that the equation Ax = x can be rewritten as (4 — 7)x = ¢ and use this result to

solve 4x = x for x.
(b) Solve Ax = 4x.

Solve the following mairix equation for X,

{1 -1 1 2 -1 5 7 8
2 3 O|X=4 0 -3 0 1
0 2 -1 3 5 =7 2 1

In each part determine whether the homogeneous system has a nontrivial solution (without
using pencil and paper); then state whether the given matrix is invertible.

fa) 20+ X — 3+ xyg=0 2 1 -3 1]
5%y -+ dxy +3x, =0 0 5 4 3
X3+2X'4ﬁ0 0 0 1 ‘ 2
3% =0 o 0o o 3]
(b) SxpFxy A+ xg=0 [s 1 4 1]
235~ x,=0 0 0 2 -1
X3“f” x‘;ﬂo 0 0 1
=0 o o o 7]

Let Ax = 0 be a homogeneous system of n linear equations in » unknowns that has only
the trivial solution. Show that if k is any positive integer, then the system A% = 0 also has
only the trivial solution.

Let Ax = 0 be a homogeneous system of # linear equations in » unknowns, and let O be
an invertible # X # matrix. Show that 4x = 0 has just the trivial solution if and only if
(OA)x = 0 has just the trivial solution.

Let 4x = b be any consistent system of linear equations, and let x, be a fixed solution. Show
that every solution to the system can be written in the form x = x, + xp, where X, is a solution
to Ax = 0. Show also that every mairix of this form is a solution.

Use part (@) of Theorem 1.6.3 to prove part (b).

1.7 DIAGONAL, TRIANGULAR, AND SYMMETRIC MATRICES

In this section we shall consider certain classes of matrices that have special forms.
The matrices that we study in this section are among the most important in linear
algebra, and they will arvise in many different settings throughout this fext,

DIAGONAL A square matrix in which all of the entries off the main diagonal are zero is called a
MATRICES dingonal matrix; some examples are
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6 0 0 0
1 ¢ 0
2 0 0 -4 0 0
0 -5 N 0 0
0 0 1 0 0
] 0 0 8
A general n X n diagonal matrix D can be written as
d 0 - 0
0 4 -+~ 0
=1 ] . (1)
0 0 - d,

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in
this case the inverse of (1) is ‘

I/dy, 0 -+ 0
pa| OV 0
0 0 1/d,

The reader should verify that DD ' =D~ 'D =,
‘ Powers of diagonal matrices are easy to compute; we leave it for the reader to
verify that if D is the diagonal matrix (1) and & is a positive integer, then

dlk 0 0
koL
O ’
0 o0 .- dnk
Example 1 If
1 0 0
A=]0 =3 0
0 2
then
1 0 0 1 0 0 1 -0 0
A '=0 -+ ol as=lo -—243 O A%=|0 - 0
' 0 0 i 0 0 32 0 0 E

Matrix products that involve diagonal factors are especially easy to compute. For
example,

d 0 0 a1 4y dpy g day diay, day diay
0 4 0 Gy Ay Uyy gy | = [ daty dhayy dyap dyay,
0 0 dsf|ay a3 ay ay dyas) diaz, dyay dyas,
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TRIANGULAR
MATRICES

diayy dyap diags
diay, dyay,  dyay
diay dyay, dyas

Gy dyp dyg
d 0 0
d;; dpp O3 0 d 0=
A -
d3;p €G3z 3
i 1o o 4
dyy dgp dy3 diay dyay, dyag

In words, to mudtiply a matrix A on the left by a diagonal matrix D, one can multiply
successive rows of 4 by the successive diagonal entries of D, and to multiply A on the
right by D one can multiply successive columns of 4 by the successive diagonal entries

of D.

A square matrix in which all the entries above the main diagonal are zero is called
lower trigngular, and a square matrix in which all the entries below the main diagonat
are zero is called upper trianguiar. A matrix that is either upper triangular or lower
triangular is called triangular.

Example 2

@y Az A3 dyg ay 00 0

0 Ay dy3 Gy a3 @y 0 0

0 0 ay ay “las asp a0

0 0 0 A4q g1 A4z 43 Qg
A general 4 X 4 A general 4 X 4
upper triangufar lower triangular
matrix matrix

REMARK. Observe that diagonal matrices are both upper triangular and lower triangular

since they have zeros below and above the main diagonal. Observe also that a square

matrix in row-echelon form is upper triangular since it has zeros below the main
diagonal.

The following are four useful characterizations of triangular matrices. The reader
will find it instructive to verify that the matrices in Example 2 have the stated properties.

® A square matrix 4 = [a;;] is upper triangular if and only if the /th row starts
with at least 7 — 1 zeros.

® A square matrix 4 = [4;;] is lower triangular if and only if the jth column starts
with at least j — 1 zeros.

* A square matrix 4 = [a,;] is upper triangular if and only if a,; =0 for i > j.

® A square matrix 4 = [a;;] is lower triangular if and only if a;; = 0 for i <.

The following theorem lists some of the basic properties of trianguiar matrices.
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FTheorem 1.7.1

{a) The transpose of a lower triangular matrix is upper triangular, and the trans-
pose of an upper triangular matrix is lower triangular. .

(b) The product of lower triangular matrices is lower triangular, and the product
of upper triangular matrices is upper triangular. f

(¢) A triangular matrix is invertible if and only if ifs diagonal entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular mairix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished
by reflecting the entries about the main diagonal; we omit the formal proof. We will
prove (&), but we will defer the proofs of (¢) and (<) to the next chapter, where we will
have the tools to prove those results more efficiently.

Proof (b), We will prove the resuit for lower triangular matrices; the proof for upper
triangular matrices is similar. Let 4 = [q;,] and B =[b,] be lower triangular n X »
matrices, and let C={¢;;] be the product C'= 45, From the remark preceding this
theorem, we can prove that C is lower triangular by showing that ¢;; = 0 for i < j. But
from the definition of matrix multiplication,

cy = anby;+ apby - - +ayb,,
If we assume that / < j, then the terms in this expression can be grouped as follows:

ij = a“blj + a,-_;_sz R o afj_!b.-__ 15 + al‘jbjf-'_ et at'nb"j

Terms in which the row Terms in which the row
number of b is less than the number of & is less than
column number of & the column number of &

In the first grouping all of the & factors are zero since B is lower triangular, and in the
second grouping all of the a factors are zero since 4 is lower triangular, Thus, ¢, =0,
which is what we wanted to prove.

Example 3 Consider the upper triangular matrices

1 3 -1 3 -2 2
A=1]0 2 4 B=1{0 0 -1
0 0 5 0 0 1

The matrix 4 is invertible, since its diagonal enfries are nonzero, but the matrix B is
not. We leave it for the reader to calculate the inverse of 4 by the method of Section

1.5 and show that

fae R )
il DR i)

N
|
I
o D
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and B are matrices such that 4B = BA, then we say that 4 and B commiute. In sumimary:

This inverse is upper triangular, as guaranteed by part (¢) of Theorem 1.7.1. We also
The product of iwo symmetric matrices is symmetric if and only if the matrices commute.

¢ leave it for the reader to check that the product 4B is
oo 3 -2 -2 : : N
45=l0 0 2 Example 5 The first of the following equations shows a product of symmetric matrices
- that is not symmetric, and the second shows a product of symmetric matrices that is
0 0 5 symmetric. We conclude that the factors in the first equation do not commute, but those

in the second equation do. We leave it for the reader to verify that this is so.
L2y -4 1] (-2 1
2 3] 1 0] [-5 2
I 24§ —4 31_12 1
2 3 3 —-1 -3

This product is upper triangular, as guaranteed by part (b) of Theorem 1.7.1.

SYMMETRIC A square matrix 4 is called spmmetric it 4 = 47,
MATRICES

Example 4 The following matrices are symmetric, since each is equal to its own
transpose (verify).

1 4 5 ¢ 0 0 0 In general, a symmetric matrix need not be invertible; for example, a square zero
[ 7 “3] 4 -3 0 0 4 0 0 mattix is symmetric, but not invertible. However, if a symmetric matrix is invertible,
-3 5 5 0 7 0 0 4 0 then that inverse is also symmetric.
¢ 0 0 4

' 1

Theorem 1.7.3. [f A is an invertible symmetric matrix, then A~ is symmetric.

It is easy to recognize symmetric matrices by inspection: The entries on the main
diagonal may be arbitrary, but “‘mirror images’’ of entries across the main diagonal

must be equal (Figure 1). Proof. Assume that 4 is symmetric and invertible. From Theorem 1.4.10 and the fact

that 4 = A7 we have

o4 8
4/‘35/0 AT = () =4
Figure 1 307 % which proves that 4! is symmetric.

This follows from the fact that transposing a square matrix can be accomplished by
mterchanging entries that are symmetrically positioned about the main diagonal, Ex-
pressed in terms of the individual entries, a matrix 4 = [a;;] is symmetric if and only
if a;; = aj, for all values of / and j. As illustrated in Example 4, all diagonal matrices
are symmetric.

The following theorem lists the main algebraic properties of symmetric matrices.
The proofs are direct consequences of Theorem 1.4.9 and are left as exercises.

“MATRICES OF Matrix products of the form 447 and A7 A4 arise in a variety of applications. If 4 is an
HE FORM AA™ - 3y X n matrix, then 47 is an # X m matrix, so the products 447 and 474 are both square
AND A'A matrices; the matrix AA4” has size m X m and the matrix 474 has size 7 X n. Such
' products are always symmetric since

AT =(AT)4T =447  and  (A7A)T = AT(4T)T = AT4

Example 6 Let 4 be the 2 X 3 matrix

1 -2 4
A"[s 0 ns]

Theorem 1.7.2. If 4 and B are symmetric matrices with the same size, and if kis
i any scalar, then: :
(a) AT is symmetric,

c(by A+Band 4 — B are symmetric. Then

; (©) kd is symmerric. I— 1 3 _ © 10 —2 —11
ATd=|~2 0 [1 MLl 4 g
REMARK. Itis not true, in general, that the product of symmetric matrices is symmetric, 3 0 —35]
To see why this is so, let 4 and B be symmetric matrices with the same size. Then from L 4 -5 (~11 -8 41
part (d) of Theorem 1.4.9 and the symmetry we have ' g ) 4 1 37 -~ 21 {7
— nT — 7T ' — =
(AB)" = BTA" =54 M=l —5] s 2j | - 17 34]

Since AB and BA are not usually equal, it follows that 48 will not usually be symmmetric.

However, in the special case where 4B = BA, the product A8 will be symmetric, If 4 Observe that 474 and AA” are symmetric as expected.
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8. Use the given equation to determine by inspection whether the matrices on the left comimute,

ol 2 el I L

9. Show that 4 and B commute if o — 4 = 75.

I S

10. Find a diagonal matrix 4 that satisfies

Later in this text, we will obtain general conditions on 4 under which 447 ang
ATA are invertible. However, in the special case where 4 is square we have the follo

ing result.

Them em 1 7.4, If A is an invertible matrix, then AAT and AT4 are also mvertzble

Proof Since 4 is invertible, so is 47 by Theorem 1.4.10. Thus, AAT and 474 4
invei’tibie, since they are the products of invertible matrices.

1 o 0 9 0 0
@a=lo -1 o () 47 2=|0 4 ¢
0 0 -1 0 0.1

EXERCISE SET 1.7

1. Determine whether the matrix is invertible; if so, find the inverse by inspection.

11. (a) Factor 4 into the form A = BD, where D i$ a diagonal matrix. "

0 0 100 s
2 0 b g 0 o © 0 2 0 3ay Say, Tay,
@ 0 -5 ®) 0 0 5 D0 4 A=|3ay Say Tay
daz, Sas, Tas
i tion.
2. Compute the product by inspection , . . ) 1 =3 0 0 (b) 1s your factorization the only one possible? Explain.
3 0 0 2 1 - .
@lo -1 oll 4 4 mlo 1 0 i 2 0 0 5 0 12. Verify Theorem 1.7.15 for the product 4B, where
0 0 2 2 5 0 0 4l -5 1 -2 00 2 -1 2. 5 2 -8 0
4=l 0 1 3} B=|l0o 2 i
3. Find 42, 472, and 4 by inspection. 0 0 —4 0 0 3

13. Verify Theorem 1.7.14 for the matrices 4 and & in Exercise 12.

$ 00
@a=|, _,| ®a=[o to0 ; . .
0 -2 0 0 & 14. Verify Theorem 1.7.3 for the given matrix 4,
. : 1 -2 3
4. Which of the following matrices are symmetric? 2 -1
2 -1 3 0 01 (a) 4= - ; 4=} -2 I =7
3. =7 4
@wl|? [3 4] @j-1t s 1} (@020 '
1 2 4 0 3 1 7 30 0 15. Let 4 be a symmetric matrix.

(a) Show that 47 is symmetric,

5. By inspection, determine whether the given triangular matrix is invertible. (b) Show that 242 — 34 + 7 is symmetric.

a4 6 1 -2 5 16. Let 4 be a symmetric matrix.
b 0 1 5 6 (a) Show that 4% is symmetric if & is any nonnegative integer.
(a) 0 30 ® o 0 -3 1 - (b) If p(x) is a polynomial, is p(4) necessarily symmetric? Explain.
0 0 5

0 5
0 0 17. Let A be an upper triangular matrix and let p(x) be a polynomial. Is p(4) necessarily upper

6. Find alt values of , b, and ¢ for which 4 is symmetric. triangular? Expfain. -

(2 a—~2b+2c 2at+bte 18. Prove: If A"A = A, then 4 is symmetric and 4 = 42.

A=]3 5 a+c
0 ~2 7
7. Find all vahues of a and & for which 4 and B are both not invertibls.

g tb-1 0 _[s 0 ]
0 3| 0 2a-3b-7

19, What is the maximum number of distinct entries that an »r X n symmetric matrix can have?

20, Letd =[a; J,] beann Xn matnx Determme whether 4 is symmetnc
(ﬂ.) aq _l +J (h) a l _'j
(¢} a;=2i+2f (d)a!—-21 + 253

A=
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21. Based on your experience with Exercise 20, devise a general test that can be applied to a
formula for g, to determine whether 4 = [a,;] is symmetric.

22. A square matrix 4 is called skew-synumetric if A7 = — 4. Prove:
{a) If 4 is an invertible skew-symmetric matrix, then 4™ is skew-symmetric.
(b) If 4 and B are skew-symmetric, then so are 4 T A+ B, A — B, and k4 for any scalar k.
(¢) Every square matrix can be expressed as the sum of a symmetric matrix and a skew-

symmetric matrix. '

23. We showed in the text that the product of symmetric matrices is symmetric if and only if
the matrices commute. Is the product of commuting skew-symmetric matrices skew-sym-
metric? Explain. [Note. See Exercise 22 for terminology. |

24. 1f the n X n matrix 4 can be expressed as 4 = LU, where L is a lower triangular matrix and
U is an upper triangular matrix, then the linear system Ax = b can be expressed as LUx = b

and can be solved in two steps:

Step 1. Let Ux =y, so that LUx = b can be expressed as Ly = b. Solve this system,
Step 2.  Solve the system Ux =y for x.

S

In each part use this two-step method to solve the given system.

ro1 o0 o2 -1 3= 1
@i-2 3 0]lo 1 2{x]|=|-2
2 4 1J{o o 4flx 0

r 20 o3 -5 2~ 4

™| 4 1 ofo 4 1flxn{=|-5

| -3 -2 3flo o 2][x 2

1. Use Gauss—Jordan elimination to solve for x” and y' in terms of x and y.
o
y=8+8y
2. Use Gauss—Jordan elimination to solve for x’ and ' in termis of x and y.
x=x"cosf—y sing ‘
y=x"sinf+y cosd
3. Find a homogeneous linear system with two equations that are not multiples of one another
and such that
=1, xm=-—1, x=1, x,=2
and
=2 x=0, x3=3 x=-1
are solutions of the system.

4. A box containing pennies, nickels, and dimes has 13 coins with a total value of 83 cents.
How many coins of each type are in the box?
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5. Find positive integers that satisfy
xt+ y+ z= 9
x+ Sy + 10z = 44
~ 6. For which value(s) of a does the following system have zero, one, infinitely many solutions?
X+ X, tx; =4
Xy =2
(@ —dxy=a—2

7. Let
' a 0 b 2
a a 4 4
0 a 2 &
be the augmented matrix for a linear system. For what values of ¢ and b does the system
have .
(a) a unique solution, (b) a cne-parameter solution,
{(c) a two-parameter solution, (¢} no solution?

8. Solve for x, y, and =.
xv—20y+3zy=28
2y —3/y+2zy =7
—xp+ VY +2zy =4
9. Find a matrix X such that 4XB = ( given that
ST B

1 4
Ad=]-2 3] B:[
-4 0 0

1 =2

ax+by—3z= -3
—2x—bp+ez=—1
ax+3y—cz= —3

has the solution x = 1, y = — 1, and z = 27

11, In each part solve the matrix equation for X,

-1 0 i 1 2 0
@x] 1 1 o0 x[_3 , 5] '(b)X[; -1 Z]E[MS ~1 0]
31—y o 1 6 =3 7

o3 Bt - )

12. {a) Express the equations

= X— Xt x
= Ay oyt

Z = ~3y + 5y~

Vo= 3xp+ xp—dx, and
=2x) — 2x, + 3x,

Y3
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[ Systems of Linear Equations and Matrices

in the matrix forms ¥ = AX and Z = BY. Then use these to obtain a direct relationship
Z = CX between Z and X.
(b} Use the equation Z = CX obtained in (a) to express z; and z, in terms of x,, x,, and x;.
(c) Check the result in (b) by directly substituting the equations for y,, y,, and y; into the
equations for z, and z, and then simplifying.

If 4 is m X » and B is # X p, how many multiplication operations and how many addition
operations are needed to calculate the matrix product 487

Let 4 be a square matrix.
{a) Show that ([ —A)~' =1+ 4 + A2+ A£ifd =0
(b) Show that (f — A) "' =T+ A4+ 47+ + 4" ifgntl=19.

Find values of a, b, and ¢ so that the graph of the polynomial p(x) = ax® + bx + ¢ passes
through the points (1, 2), (— 1, 6), and (2, 3).

(For readers who have studied calculus.) Find values of a, b, and ¢ so that the graph of the
polynomial p(x) = ax? + bx + ¢ passes through the point (— 1, ) and has a horizontal tan-
gent at (2, — M.

Let J, be the n X # matrix each of whose entries is I. Show that

1
U—g)t=i-—,
n—

1
Show that if a square matrix 4 satisfies 4* + 442 — 24 + 7I = 0, then so does 4”.

Prove; If B is invertible, then 4B~ ! = B4 if and only if 4B = B4,

Prove: If A is invertible, then 4 + B and 7 + BA™ " are both invertible or both not invertible.

Prove that if 4 and B are # X n matrices, then
(a) tr(d + B) = t(4) + t(B) (b) fr(kd) = k tr{d)

Use Exercise 21 to show that there are no square matrices 4 and B such that
AB—BA =1

Prove: If A is an m X n matrix and B is the n X 1 matrix each of whose entries is 1/n, then

© w(@Ty=tr(d)  (d) tr(dB) = tr(BA)

where 7, is the average of the entries in the ith row of 4.

(For readers who have studied caleulus.) Tf the entries of the matrix

en(x) e} o o)
_ en(x)  cpl®) - )
cmh(x) sz(x) o Cmu(x)

are differentiable functions of x, then we define
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C) Ca® el
Cé](x) Cél(x) e C;!u(x)

cr:rl(x) Cr::?.(x) e Cr;m(x)

s are such that the stated operations can be performed, then

: dA d dd dB d dd dB
=k= b) — (4 +B)=—+— £ a4 a5
kd)=k— (0 7 x( ) ol (c) - (4B) de+Adx

e all the assumptions you make in obtaining this formula.
nd the values of 4, B, and C that will make the equation

*+x—-2 4 Bx+C
Gr—DEP+1D 3x~1 x2+1

i identity. (Hint. Mulltiply through by (3x — 1)(x* + 1) and equate the corresponding coef-
ﬁ;i;:nts of the polynomials on each side of the resulting equation.]

If Pis an n X 1 matrix such that PTP = {, then H=17— 2PPT is called the corresponding
Householder matrix (named after the American mathematician A. S. Householder).
(a) Verify that P'P=1if P"=[5 } } & $]and compute the corresponding Householder

matrix.

c) Verify that the Householder matrix found in part (a) satisfies the conditions proved in
part (b).

8. Assuming that the stated inverses exist, prove the foilo'wing equalities,
() C 1+ Y ' =CC+D) D () T+ CDYT\C =+ DO)!
@ (C+DDTY 'D=C1DI+D7C'D)~!

(a) Show that if @b, then

- et 212 _ an+l_bn+l
a"+a"" b+ at T ab" T 4 =

a—b
{b) Use the result in part (a) to find 4" if
a 0 0
A=|0 b 0
10 ¢

[Vote, This exercise is based on a problem by John M. Johnson, The Mathematics Teacher
Vol. 85, No. 9, 1992.] ’




