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The constraints of the problem require installing
(A to K). Thus, the model is

Minimize z = x

1 ¥ X2 Xy Xy ¥ X5 +
subject to
X, + X =
Xy + X3
Xy *+ Xs
Xt xg =
Yo + X
X + X,
Xy + X4
Xy + X7 =
> + Yy =
XE T+ Xy =
X3 + Xs =
X =(01).;=1.2..8

at least one telephone on each of the 11 streets

Yo+ X0+ g
1 (Street 4)
1 (Street B)
I (Street C)
I (Street D)
1 (Street E)
I (Street F)
1 (Street G)
L (Street H)
1 (Street )
I (StreetJ)

(Street K)



EFEFE 528 33 528 198 198 198 2.64
EERK 177 266 325 2.66 266 4.01 2.66
Rl BE 385 385 495 44 33 33 33
PEBE S E AT T 33 33 22 1.1 11 22 33
BRI 174 174 1.8 1.77 2.84 006 0
TtEEAFRREE 039 032 032 07 07 056 056
RBES T 0.04 0.08 0.12 0.14 0.08 0.19 0.19
RIBERRIR R 0.18 0.18 027 027 03 024 024
NSRS ETE) 0.07 0.04 0.1 0.08 0.07 0.09 0.1
IKEE 0.05 0.05 0.09 0.05 0.05 0.06 0.06
st 70.28 73.98 82.11 77.97 782 73.05 70.01

SR 10 REREN LR - FBRBOBEFVEF -

. ZHERE(covering model)
ZRANRBENFHRIEIEYHR - BER - BRF

e g YR FEENVE AEET » SREFELEREEHREHLERR - ZERE
FE BRI E B BT B ELE—EIRALE 15 pEREEEET
SIS FENSIRMRT R » AT RRERIREE R HEEEAE -

MinimizeZ=X, +X, + X, + X, + X, + X,
st X, +X, 21
X, +X,+X, 21
X, +X, 21
X, +X,+X; 21
Xi+Xs+X, 21
X, + X, +X, 21
Xi=0orl(i=1,2,3,4,5,6)
Z=2,X,=X,=1,X,=X, =X, =X, =0

10

1 2 3 4 5
1 0
2 10 0
3 20 25
4 30 35 15 0
5 30 20 30 15 0
6 20 10 20 25 14
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92  INTEGER PROGRAMMING ALGSRITHS

The ILP algorithms are based on exploiting the tremendous computational success of
LP. The strategy of these algorithms involves three steps.

Step 1. Relax the solution space of the ILP by deleting the integer restriction on all
integer variables and replacing any binary variable y with the continuous
range 0 = y = 1.The result of the relaxation is a regular LP.

Step 2. Solve the LP, and identify its continuous optimum.

Step 3. Starting from the continuous optimum point. add special constraints that iter-
atively modify the LP solution space in a manner that eventually renders an
optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints
in step 3.

1. Branch-and-bound (B&B) method
2. Cutting-plane method

Neither method is consistently effective computationally. However, experience shows
that the B&B method is far more successful than the cutting-plane method.

T ————

r\/l ot mize Z=5%K, -’r—%,

st
Kt Ko =5
[0+ €KX, <45

%,/ %X, wanef,«lt\/e r m‘?%/
5 Brichod- Bund (BEE) At
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Feasible integer points

4 ¢~ \

Y SR Optimum(continuous):

: x;=375,x =125

N 7=12375

2 ¢ «

1.9 ®
FIGURE 9.5 i N 1 .
ILP solution space of Example 9.2-1 0 i 2 3 4 5 6

ILP optimum. First, we select one of the integer variables whose optimum vatue at LP
is not integer. Sclecting x; (=3.75) arbitrarily, the region 3 < x; < 4 of the 1.P0 solu-
tion space contains no integer values of x; and can be eliminated as nonpromising, This
is equivalent to replacing the original LP0 with two new 1.Ps LP1 and 1.P2, defined as

3 b?. P ?ayéa,w,\
4

LP1 space = LPOspace + (x; =

LP2 space = LP0 space + (x; =

Figure 9.6 depicts the LP1 and LP2 spaces. The two spaces contain the same feasi-
ble integer points of the original ILP, which means that, from the standpoint of the inte-
ger solution, dealing with LP1 and LP2 is the same as dealing with the original LPO.

If we intelligently continue to remove the regions that do not include integer solu-
tions by imposing the appropriate constraints (e.g.,3 < x; < 4 at LP0), we will cventu-
ally produce LPs whose optimum extreme points satisfy the integer restrictions. In
cffect, we will be solving the ILP by dealing with a succession of (continuous) LPs.

The new restrictions, x; = 3 and x; = 4, are mutually exclusive, so that LP1 and 1.P2
must be dealt with as separate LPs as Figure 9.7 shows. This dichotomization gives rise to

the concept of hranching in the B&3 algorithm with x, being the branching yariable— ﬂwm.m

The optimum ILP lies in either LP1 or LP2. Hence, both subproblems must be
examined. We arbitrarily examine LP1 (associgted with x; < 3) first.

Maximize z = 5x; + 4x,

subject to
xn+ =<5
10x, + 6x, <
0 =3

<

Xy, A =

JEA

Nl\
&

23

L
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n=4
——
FIGURE 9.6
A Solution spaces of LP1 and LP2

for Example 9.2-1

LPo
% =375,% =125,z = 2375

K\P\» = ho&m\ “::s\L
:?)\ e hPlK\.\ _“GS\\\

LP1
x=3,x5=2,2=23
Lower bound (optimum)

LP2
xn=41x,=483,7=2333

FIGURE 8.7

Using branching variable x; to cre-
ate LP1 and LP2 for Example 9.2-1

The solution of LP1 (which can be solved efficiently by the upper-bounded algorithm

of Section 7.3) yields the optimum solution
xp=3,x,=2,andz = 23

The LP1 solution satisfies the integer requirements for x; and x,, Hence, LP1 is said to
be fathomed. This means that LP1 need not be investigated any further because it can-

7

not yield any better ILP solution.

We cannot at this point say that the infeger solution obtained from LP1 is opti-
mum for the original problem because LP2 may yield a better integer solution (with a
higher valuc of z). All we can say is that z = 23 is a lower bound on the optimum (max-
inlum) objective value of the original ILP. This means that any unexaniined subprob-
lem that cannot yield a better objective value than the lower bound must be discarded . .\
as nonpromising. If an unexamined subproblem produces a better intcger solution,
then the lower bound must be updated accordingly. o
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Given the lower bound z = 23, we examine LP2 (the only remaining unexamineg
subproblem). Because optimum z = 23.7S at LP0 and all the coefficients of the objec.
tive function happen to be integers, it is impossible that LP2 (which is more restrictiye
than LPO) will produce a better integer solution. As a result, we discard LP2 and cog.
clude that it has been fathomed. O =0 o A(FREHA)

The B&B algorithm is now complete because both L.P1 and LP2 have been exany”
ined and fathomed (the first for producing an integer solution and the sccond for

optimum ILP solution is the one associaled with thd lower bound—namely, x; = 3
v, = 2,and z = 23. K =4 Ko  zopy, ¢ 32

Two questions remain unanswered regarding the procedure:

1. At LPO, could we have selected x;, as the branching variable in place of x,?

2. When selecting the next subproblem to be examined, could we have solved 1.p2
first instead of LP1?

The answer to both questions is “yes.” However, ensuing computations could differ
dramatically. Figure 9.8, in which LP2 is cxamined first, illustrates this point. The opti-
mum LP2 solution is x; = 4, x, = .83, and z = 23.33 (verify using TORA LP module).
Because x, (=.83) is noninteger, LP2 is investigated further by creating subproblems
LP3 and LP4 using the branches x, = 0 and v, = 1, respectively. This means that

LP3 space = LP2 space + (x, = 0)
LPO space + (x, = d) + (x, = 0)
LP2 space + (v, > 1)
LPOspace + (v = d) + (x, = 1)

We have three “dangling” subproblems that must be examined: LP1, LP3, and
LP4. Suppose that we arbitrarily examine LP4 first. LP4 has no solution, and hence it is
fathomed. Next, let us examine LP3. The optimum solution is x; = 4.5, x, = 0, and
z = 22.5. The noninteger value of xy (=4.5) leads fo the two branches x; = 4 and
x; = 5, and the creation of subproblems LPS and LP6 from LP3.

i

1

LP4d space

1l

LLPS space = LPOspace + (x; = 4) + (v; = 0) + (v, = 4) = LPOspace + (x; = 4) + (x, = 0)
0) + (x; = 5) = LPOspace + (v, = 5) + (x, < 0)

Now, subproblems LP1, LPS, and LP6 remain unexamined. LP6 is fathomed
because it has no feasible solution. Next, LPS has the integer solution (x; = 4, x, =
0, z = 20) and, hence, yields a lower bound (z = 20) on the optimum ILP solution. We
are left with subproblem LP1, whose solution yields a better integer (x; = 3, x, = 2,
z = 23).Thus, the lower bound is updated to z = 23. Because e/ the subproblems have
been fathomed, the optimum solution is associated with the most up-to-date lower
bound—namely,x; = 3, x; = 2,and z = 23.

The sclution sequence in Figure 9.8 (LP0 — LP2 — LP4 — LP3 — LP6 — LP5 -
LP1) is a worst-casc scenario that, nevertheless, may occur in practice. The example
points to a principal weakness of the B&B algorithm: How do we select the next sub-
problem to be examined, and how do we choose its branching variable?

In Figure 9.7, we were lucky to “stumble” upon a good lower bound at the very
first subproblem, LP1, thus allowing us to fathom LP2 without further computations
and to terminate the B&B scarch. In essence, we completed the procedure by solving

LP6 space = LPOspace + (x; = 4} + (x,

1A

Ly
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LPO
Xy =375,x,= 1.25,7 = 2375

LP1
g fad w..«u =2,7=23
Lower bound (optimum)

Lr2
X =d,x, =083,z = 23.33

LP3 LP4
‘Zc feasible solution \@..,fe\:e.\%\
T
e JesV w

/\ w'h.nf.ﬁ, '

X =4

LP5 LP6
xy=4,x,=0,2=20 No feasible sotution
Lower bound B FIGURE 9.8

Alternative B&B tree for Example 9.2-1

one subproblem only. In Figure 9.8, we had to examine seven subproblems before the
B&B algorithm could be terminated. Although there are heuristics for enhancing the
ability of B&B to “guess” which branch can lead to an improved ILP solution (see
Taha, 1975, pp. 154-171), there is no solid_theory that will-always-yield-consistent—
results, and herein lies the difficulty that plagues computations in TLP Indeed in
Section 9.2.2, Problem 1, Set 9.2b, demonsirates with the help of TORA the bizarre
behavior of the B&B algorithm, even for a small 16-variable [-constraint problem,
where the optimum is found in 9 iterations (subproblems) but requires over 25,000
iterations to verify optimality. It is no wonder that to this day, and after four decades of
research, available computer codes (commercial and academic alike) lack consistency
(a ta simplex method) in solving [LPs.

We now summarize the B&B algorithm. Assuming a maximization problem, set
an initial lower bound z = —00 on the optimum objective value of 1L.P. Set i = 0.

Step 1. (Fathoming/bounding). Select LPj, the next subproblem to be examined.
Solve LPi, and attempt o fathom it using one of three conditions.
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& The optimal z-valuc of LP/ cannot yicld a better objective value than
the current lower bound.

;v LPi yiclds a better fecasible integer solution than the current lower
bound.
/\av LPi has no feasible solution.

"Pwvo cases will arise.

(a) If LPiis fathomed and a better solution is found, update the lower
bound. If all subproblems have been fathomed, stop; the optimum 1LP
is associated with the current lower bound, if any. Otherwise, set
i =i+ 1,and repeat step 1.

(b) Tf LPiis not fathomed, go to step 2 for branching. .

Step 2. (Branching). Select one of the integer variables x;, whose optimum value x;
in the LPi solution is not integer. Eliminate the region

[ < <[y +1
(where [v] defines the largest integer < v} by creating two LP subproblems
that correspond to

.

X = [landy =[] + 1

1 ]

Seti =i+ 1,and gotostep 1.

The given steps apply to maximization problems. For minimization, we replace
the lower bound with an upper bound (whose initial valuc is z = +00).

The B&B algorithm can be extended directly to mixed problems (in which only
some of the variables are integer). If a variable is continuous, we simply never select it
as a branching variable. A feasible subproblem provides a new bound on the objective
value if the values of the discrete variables are integer and the objective value is im-
proved relative to the current bound.

PROBLEM SET 9.2A

1. Solve the ILP of Example 9.2-1 by the B&B algorithm starling with x, as the branching
variable. Solve the subproblems with TORA using the MODIFY option for the upper
and lower bounds. Start the procedure by solving the subproblem associated with

X =[xl
2. Develop the B&B tree for each of the following problems. For convenience, always sclect
x, as the branching variable at node 0.
(a) Maximize z = 3x, + 2,
subject to
2% + 56, =9
dxy + 20, = 9
1y, x; = 0and integer

(b) Maximize z = 2x, + 3x,

9,22
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subject to
Sy + T, =35

36

A

4x, + v,
Xy, X, = 0and integer

{¢) Maximizez =x, +x,
subject to
2x; + Sy, = 16

6x, + 5x, < 27
Xy, ¥, > 0and integer
(d) Minimize z = Sx; + dx,
subject to
I+ 2, =5
2y, + 30, =7
a1y, X = 0and integer
{e) Maximize z = Sx; + Tx;
subject to
2+ x, =13

Sxp + 9y =< 41

A

Xy, X, = 0and integer

3. Repeat Problem 2, assuming that x; is continuous.

4, Show graphically that the following ILP has no feasible solution, and then verify (he
result using B&B.

Maximize z = 2x, -+ x,

subject 10

IA

9
1

10x, + 10x,

v

106, + 5y,
Xy, %; = O and integer
5. Solve the following problems by B&B.
Maximize z = 18x; + ldx; + 8xy + dxy
subject to
15x) + 12xp + Tx3 + dx; + x5 = 37

X1, Xy, X3, Xy, X5 = (0, 1)

TORA-Generated B&B Tree

TORA integer programming module is equipped with a facility for generating the
B&B tree interactively. To use this facility; select yser:guided; ngn in the outpui screen




é GAHMZ—]D(AM, Al than
o [} BZB , W @A G A apheal LP sldion
H 3 ey R A (GG o)
iﬁﬁzﬁhxéﬁ -&%j

Mok\(:m.ze 7 E 7‘7(,, {
=X A% 24
JX+ "X =35
(XI'(K.L = 0 a/u«{ n‘v"ﬂgf/i/_

FIGURE 9.8
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