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Discrete
Optimization Methods

In Chapter 11 we illustrated the wide range of integer and combinatorial optimization
models encountered in operations research practice. Some are linear programs wiih
a few discrete side constraints; others are still linear but involve only combinatorial
decision variables; still others are both nonlinear and combinatorial. Every ome
includes logical decisions that just cannot be modeled validly as continuous, so most
lack the elegant tractability of the LT and network models studied in earlier chapters.

Diminished tractability does not imply dimished importance. Discrete opti-
mization models such as those presented in Chapter 11 all represent critical decision

" problems in engineering and management that must somehow be confronted. Even

partial analysis can prove enormously valuable.

It should not surprise that discrete optimization methods span a range as wide
as the models they address. In contrast to, say, linear programming, where a few
prominent algorithms have proved adequate for the overwhelming majority of mod-
els, success in discrete optimization often requires methods cleverly specialized to an
individual application. Still, there are common themes. In this chapter we introduce
the best known.

EZGE SOLVING BY TOTAL ENUMERATION

Beginning students often find counterintuitive the idea that discrete optimization

problems are more difficult than their continuous analogs: The algebra of LP algo-

rithms in Chapters 5 and 6 is rather daunting, By comparison, a discrete model, which

has only a finite number of choices for decision variables, can seem refreshingly easy.

Why not just iry them all and keep the best feasible solution as optimal? '
Although naive, this point of view contains a kernel of wisdom.
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apter Twelve e Discrete Optimization Methods

Total Enumerdiion

To be more specific, total or complete enumeration requires checking all possibilities
implied by discrete variable values.

Swedish Steel All-or-Nothing Example

12.1  Solving by Total Enurneration

min  16(75}(0) + 10250)(0) + 8x3 + 9x4 + 48x5 + 60xs -+ 53x7

s.t.. T5(0) + 250{0) + x3 + x4 + X5 + x5 + X7 = 1000
0.0080(75)(0) + 0.0070(250)(0) 4+ 0.0085x5 + 0.0040x4 > 0.0065¢1000)
0.0080(75)(0) + 0.0070(250)(0) + 0.0085x5 + 0.0040x, < 0.0075¢1000)

0.180(75)(0) + 0.032(250)(0) + 1.0xs
0.180(75)(0) + 0.032(250)(0) + 1.0xs
0.120¢75)(0) -+ 0.011(250)(0) + 1.0x5
0.120¢75)(0) + 0.011(250)(0) + 1.0x5
0.001(250)(0) + 1.0x7
0.001(250)(®) + 1.0x7

= 0.030(1000)
< 0.035(1000)
> 0.010(1000)
< 0.012(1600)
= 0.011(1000)

We can illustrate with the discrete version of our Swedlsh Steel example formulated

in model (11.2) (Section 11.1):

mm 16(75)y1 + 10(250)y2.+ 8x3 + 9xy + 48x5 + 60xs + 53x4

st.- 75y + 250}12 + X3 X4+ X5+ x5+ X7

0.0080{75}y; + 0.0070(250)y, + 0.0085x3 + 0.0040xs > 0.0065(1000)
0.0080(75yy1 + 0.0070(250)y2 + 0.0085x5 ~+ 0.0040x, < 0.0075(1000)

0.180(75) 1 + 0.032(250)y + 1.0:5
0.180(75)y1 + 0.032(250)y ~ 1.0x5
0.120075)v1 + 0.011(250)y; + 1.0x6
0.120(75)y» + 0.011(250)vs + 1.0x4
0.001(250)y; + 1.0x7
0.001250)y; -+ 1.0x7

= 1000

> 0.030(1000}
< 0.035(1000)
> 0.010(1000)
< 0.012(1000)
> 0.011(1000)
< 0.013(1000)

(12.1)

X3, ..., %720
Vi, y2=00r1
In this version the first two sources of scrap iron have to be entered on an all-or-

nothing basis modeled with discrete variables. The other five sources can be em-
ployed in any nonnegative amount.

There are 2 possible values for y; and 2 for y, or a total 0of 2-2 = 4 combinations

to enumerate. Table 12.1 provides details. Third option vy = 1, y» = 0 yields the
optimal solution with objective value 9540.3.

TAsLE 12,1 Enumeration of the Swedish Steel All-or-Nothing Model

Discrete Corresponding Continuons Objective
Combination Solution Value

yi=0 y=0 p=8143, x,=1146, x;=300, xz=100, x,=11 99141
yi=90, y,=1 x=6379, x,= 820, x=220, x,= 73, x,=09 98773
yi=1l y,=0 =7276, x,=1788, x;=163, xg= 10, x;=11 595403
yp=1 yp=1 5=5528, x,=1129, x= 85 x= 00, x,=09 959L1

Since this model has both discrete and continuous variables, each case enu-
merated requires solving a continuous optimization over variables xs, ..., x7 to find
the best continuous values to go with the choice of discrete variables selected. For
example, fixing y1 = y» = 0 in model (12.1) Teaves the linear program

< 0.613(1000)
TR o 0 - . .

Optimatl solution xz = 814.3, x4 = 144.6, x5 = 30.0, xs = 10.0, x; = 1.1, compietes
the first case in Table 12.1.

Solve the following discrete optimization model by total enumeration | |

max  Tx; + 4xz + 19x3
s.t. x1+x3 <l
X2+x3 <1
X1, X9, X3 = Qorl

Aunalysiss Checking the 2° = 8 combinations produces the following table:

Case Ohjective Case Objective
x=(0,0,0) 0 x=(1,0,0) 7
x=(0,0,1) 19 x={1,0,1) Infeasible
x={0,1,0) 4 x=(1,1,0) 11
x=(0,1,1) Infeasible | x=(1,1,1) Infeasibie

Solution x = (0, 0, 1} is the feasible one with best objective value 19, so it is optimal.

Exponential Growih of Cases to Enumerate
Our Swedish Steel example has two discrete decision variables, each with two possible
values 0 and 1. A total of

2.2=22=4

combinations result.
Similar thinking shows that a model with & binary decision variables would
have :
2.2...2=2F
e —
k times

cases to enumerate. This is exponential growth, with every additional 0-1 variable
doubling the number of combinations.

629



630

Chapter Twelve o Discrete Optimization Methods

An analyst can easily run 22 = 4 or 2% = 16 cases~—perhaps even 219 == 1024
with the aid of a computer. But 21% »~ 10°, and we know that a discrete model with
k = 100 binary variables is not particularly large.

The fastest current computers perform a few billion (10”) arithmetic operations
in a second. Future computers might well soive the entire linear program associated
with each choice of discrete variables in that same time. Assume even more, that
a trillion (10"} cases could be checked in a single second. Eaumeration of a 100-
variable model would still require

2108

oE ™ 1.27 % 10'® seconds =2 402 million centuries

too long for the most patient of decision makers to wait.

Suppose that your personal computer can enumerate one combination of dlscrete
values each second of a given mixed-integer program, including solving the implied
optimization for corresponding continuous variable values. Determine how long it
would take to totally enumerate instances with 10, 20, 30, and 40 binary variables.

Analysis: For 10 variables, enumeration would require
2% = 1024 seconds = 17.1 minutes

Each increment of 10 binary variables multiplies the number of combinations by
210 = 1024, Thus a case with 20 variables would require

1624 - 17.1 =2 17, 500 minutes ~ 12.1 days

An instance with 39 binary variables would need about 1024 - 12.1 = 12,390 days,

and one with 40 variables would require nearly 12.7 million days, more than 347
centuries.

Nonlinearities

The practicality of enumeration in mixed cases is also limited by the continuous
problem that remains when discrete variables are enumerated. Qur Swedish Steel
case was an integer linear program {ILP), so that each case involved only solving an
LF. H the remaining continuous model had been nonlinear, even evaluating the cases
could have been a difficult task.

12.2 RELAXATIONS OF DISCRETE OPTIMIZATION MODPELS
AND THEIR USES

Because analysis of discrete optimization models is usually hard, it is natural to
look for related but easier formulations that can aid in the analysis. Relaxations are

122 Relaxations of Discrete Optimization Models and Their Uses

' auxiliary optimization models of this sort formed by weakening either the constraints

or the objective function of the given discrete model.

EXAMPLE 12.1: BISON BOOSTERS

Before considering relaxation in the more realistic circumstances of models in Chap-

ter 11, it will help to develop a more compact (albelt highly artificial) example. Con-

sider the dilemma of the Bison Boosters club supporting the local atheletic team.
The Beoosters are trying to decide what fundraising projects to undertake at the

- next country fair. One option is customized T-shirts, which will sell for $20 each; the

other is sweatshirts selling for $30. History shows that everything offered for sale
will be sokd before the fair is over.
Materials to make the shirts are alf donated by local merchants, but the Boosters
must rent the eqmpment for customization. Different processes are involved, with
the T-shirt equipment renting at $550 for the period up to the fair, and the sweatshirt
equipment for $720. Display space presents another consideration. The Boosters
have oniy 300 square feet of display wall area at the fair, and T-shiris will consume
1.5 square feet each, sweatshirts 4 square feet each. What plan will net the most

incorne? ) N ) o
Certainly this problem centers on making shirts, so decision variables will in-

clude
x1 2 number of T-shirts made and sold
x7 & number of sweatshirts made and sold

However, the Boosters also confront discrete decisions on whether to rent equip-
ment:
y1 & 1if T-shirt equipment is rented and = 0 otherwise
y2 & 1if sweaishirt equipment is rented and = 0 otherwise
Using these decision variabies, the Boosters’ dilemma can be modeled:

max 20x; +30x; — 550y, — 720y, (net income)

st L.5xg 4 4xy <300 {display space)
x1 < 200y, (T-shirts if equiﬁment} (12.2)
X2 < 73y {sweatshirts if equipment) ’
X1, X2 = ]
y.yz=0orl

"The objective function maximizes net income, and the first main constraint enforces
the display space limit. The next two constraints provide the switching we have seen
in other models. Any sufficiently large big-M could be used as the y; coefficient
in these constraints. Values in (12.2) derive from the greatest production possible
within the 300 square feet display limit. Coetficients 300/1.5 = 200 for T-shirts and
30074 = 75 for sweatshirts introduce no limitation if y’s equal 1, yet switch off all
production if y’s equal 0.

Enumeration of the 4 combinations of y; and y, values easily establishes that
the Boosters should make only T-shirts. The unique optimal solution is x = 200,
x5 =10.y} = 1,y = 0, with net income $3450.
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Constraint Relaxations

Relaxations may weaken either the objective function or the constraints, but the
elementary ones we explore in this book nearly all focus on constraints. A constraint
relaxation produces an easier model by dropping or easing some constraints.

New feasible solutions may be allowed, but none should be lost.

Table 12.2 shows several constraint relaxations of the tiny Bison Boosters model
{12.2). The first simply doubles capacities. The resultiscertainly arelaxation, because
every solution fitting within the true capacity of 300 square feet will also fit within
twice as much area. Still, this relaxation gains us little.

FARBLE 32,2  Constraint Relaxations of Bison

Boosters Model

Revised Constraints Discussion
1.5x; + dx; <600 Doubled capacitics. Relaxation
x, <400y, optimum: #) =400, £, =0, # =1,
x; <150y, ¥, =0, net income $7450
Xy X320
¥y, yp=00rl
x, <200y, Propped first constraint. Relaxation
275y, optimum: % =200, £ =75, § = 1,
1y x, 240 Jo= 1, net income $4980
_)‘r1 y=0o0rl
1.3 + 4, <300 Linear programming reiaxation with
xy 2200y, discrete variables treated as continu-

=73y, ous. Relaxation optimum: £, = 200,

¥ % =0 =0, ¥ =1,§,=0, net income
0z y, 1 $3450
0y, 51

SR B R xya% :;

G gt e

Doubling capacities fails this requirement because the character of the model is
unchanged.

The second relaxation of Table 12.2 is more on track. Dropping the first con-
straint delinks decisions about the two types of shirts. It then becomes much easier to
compute a {relaxation) optimal solution. We need only decide one by one whether
the maximum production now allowed each x; when its y; = 1 justifies the fixed cost
of equipment rental. Both do.

Determme whether or not each of the fo[]owmg mixed-integer programs is a con-
straint refaxation of

122 Relaxations of Discrete Optimization Models and Their Uses

min- 3 +6xz + 7x3 + X3

st 2% + x4+ as 4+ 102 = 100
X+ +x = 1
x1,%,x3=00rt

Xq > 0
(a) min 3x; +6x 4+ Txz + x4 i (8)  min 3x + 6k +Tx3 + 5y
st 2% +x2 +xz 4+ 10x4 > 100 st 2x; +xz + x5+ 10xg = 200
X, %, x3=00r1 X +xo+x3 =<1
x430 X1, X2, X3 =0orl
X4 = 0
(¢} - -min - 3x + 6xg +Tx3 + X4 o AdYy o min 3xy A 6xe A Txs x|
st 23 +x +x3+ 10xe = 100 st 2x +x +x3+ 10k = 100

X +xat+x<i
12620, 1z2xn20,
1>2x320, 24 =0

x1+xr+ax3 <1
Xi, X2, %3, 53 = 0

Analysis: We apply definition '

() This model is a conséraint relaxation because it is formed by dropping the second
main constraint, Certainly, every solution feasible in the original model remains so
with fewer constraints.

() This model is not a relaxation. The only change, which is increasing the right-
hand side by 100, to 200, eliminates previously feasible solutions. One example is
x ={0,0,0,10).

(c) This model is a relaxation. Allowing xi, Xz, and x3 to take on any nonnegative
value—rather than just 0 or 1—cannot eliminate previously feasible solutions.

(d) This model is also a relaxation. Allowing x1, Xz, and x3 to take on any values in
the interval {0, 1] preciudes none of their truly feasible values.

Linear Programming Relaxations

The third case in Table 12.2 illustrates the best known and most used of all constraint
relaxation forms: linear programming, or more generally, continuous relaxations.

In the real Bison Boosters model, each y; must equal O or 1. In the continuous
relaxation we also admif fractions, replacing each

yy=0orl by lzy=z=0

Certainly, no feasibie solutions are lost by allowing both fractional and integer
choices for discrete variables, so the process does produce a valid relaxation. Mare
important, the relaxed model usually proves significantly more tractable.
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Our Bisori Boosters model is an integer linear program (ILP), linear in all
aspects except the discreteness of y; and y;. Thus, relaxing discrete variables to
continuous leaves a linear program to solve—the linear programming relaxation; we
have already expended several chapters of this book showing how effectively linear
programs can be analyzed.

i
Sk ised
K B e S

!

o

amming Telaxation of the foilowing mixed-integer program:
min  15x + 2x; — dxa + 10xs
st x3—x =0
X1+ 2x3 + 4x3 + 8x4 = 20
Xy t+xg <1
n =0

X2, X3, X4 = Qorl

Analysis: Following definition 121§, we replace 0-1 constraints x = Qorl by
¥; € [0, 1] to obtain the LP relaxation

min  15x7 +2x; — 4x3 + 10xy
st. x3—-x4<0
X1+ 2xo b dxy + Bag =20
X+ xg <1
’ x>0
12320 1>2x3>0,1>2x>0

Proving Infeasibility with Relaxations

Exactly what do relaxations add to our anaiysis of discrete optimization models?
One thing is prove infeasibifity. '

Suppose that a constraint relaxation comes out infeasible. Then it has no so-
lutions at all. Since every solution to the full model must also be feasible in the
relaxation, it follows that the original model was also infeasible. By analyzing the
relaxation we have learned a critical fact about the model of real interest.

T,
s-wsa‘«fwr*%?ﬁ&
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| Use linear programming relaxation to establish that the following discrete optimiza-
tion model is infeasible:

122 Relaxations of Discrete Optimization Models and Their Uses
Cmmin 8y + 2%
stk o xp—xe>2
. —X1+x2 2> -1
X1, x» > 0 and integer
Analysis: The linear programming relaxation of this model is
min  8x; + 2x;
1. X1 —xXz >2
—x1+x = -1
X1, % =0
It is clearly infeasible, because the two main constrainis can be written
XX =2 .
X1 — X < 1

Thus by principle EIZ#& . the given integer program is alsoinfeasible. Any sotutions
"satisfying all constraints would also have to be feasible in the relaxation.

Solution Value Bounds from Relaxations

Figure 12.1 illustrates how relaxations also give us bounds on optimal solution values.
Constraint relaxations expand the feasible set, allowing more candidates for relax-
ation optimum. The relaxation optimal value, which is the best over the expanded
set of solutions, must then equal or improve on the best feasible solution value to the
true model

feasible solutions in relaxation

feasible solutions in thte model

FiGure 12.1 Relaxations and Optimality

All three relaxations in Table 12.2 illustrate the maximize case. The optimal
solution value of the Bison Boosters model (12.2) is $3450. One of the cases in Table
12.2 yields exactly this value. The others produce higher estimates of net income.

£
)

All provide the upper bound guaranteed in principle
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(a) max x+x x5

] VrV;;h thf? Bison Boosters _model; which is so small that it is ez.tsiiy.solved opﬁ- .
mnaly, E{XHU.OH bounds offer little new insight. A better sense of their val i
from comsidering the somewhat larger EMS mode! (11.8) of Secti eirlv; l;e i st xbi =
i . . ection 11.3 that mini- !
mizes the number of stations to cover the 20 metropolitan districts: m ; f;l i? E }1
10 : i 2 7 <
i : ' . X0, x3=00r1
min ;x} {number of sites) Con (b) min 20 O, 47
= : min Xy 4+ 9x2 + /X3
st > 1 (district1) . st 10x +dn + 3627
Y1 > 1 (district2) ' %3 =0ord
X1+ x T : .
x; 3 > 1 Ejlstnct 3) : Analysis:
e istrict 4 ; :
X3 = 1 ¢ district 5; : (a) Clearly, only one of the variables in this model can = 1, so the optimal solution
: T IR . : lue is 1. Corresponding linear samming relaxation - :
X2 > 1 (district 6) ' T vaine s 1, LOmespor ] g. mear pro . 1 81 _ O__-_
Kz b = 1 (district7) max -+ i?
X3+t > 1 (district 8) : s j:fj 21
& > 1 (district 9) - trel
fi% > 1 (district 10) (12.3) 1% x1,%2. %3 2 0
4T X5 > 1 (district 11 : - -
Xa+ x5 + X > 1 (district 12; i }_iieldf optimat solution & = (%, 5. 3y with objective value 2. In accord with principle
X4+ X5+ X7 > 1 (district 13) ;., ,lrelaxation value  is an upper bound on the true optimal value 1 of this
X3+ xg > 1 (district 14) _ maximize model.
xg + X9 > 1 (district 15) ' {b) Total enumeration shows that an optimal solution to this minimizing ILP isx =
X5 + X > 1 (district 16) . (0, 1, 13 with value 16. Its linear programming refaxation is
X5+ x7 + X1 > 1 (district 17) min  20x; + 9%z + 753
xg '?‘XQ > 1 (district 18) st 10 + 4%, +3x3 27
Xg -~ X10 = 1 (district 19) 1> x,%,%X3 2 0
*10 ictri : . ..
=z 1 (district 20} . . with optimal solution X = (.0, 0) and value 4. Demonstrating principle [
X, ¥ =00rl . . ) .
Ho relaxation value 14 provides a lower bound on true optimal value 16.
W ITl i : . Ll .
{he answer isarhlz I_S;ltlglbli does tans n_lodel tmply? Even with just 10 discrete variables, 5 N . . .
s tho resulting line]?'us. ut if we replace each x; = 0 or 1 constraint by 0 < ! Optimal Solutions from Relaxations
A ar pro i i : -
programming relaxation can be solved quickly with say, . Sometimes relaxations not only bound the optimal value of the corresponding dis-

the si ; ; >
o simplex algorithm. An optimat solution is crete model but produce an optimal solution

%‘1 =F=0
Bonmh=te=] (12.4)
=== =] | V 4
with optimal value 6.0. Without looking any f : . : e el R el
conclude that at least 6 EMS sites wi;?l%ed?gqﬁ;;lzle; e the[fl'lsirete model, we can Another look at Figure 12.1 will show why, All (shaded area) feasible solutions
. 1 ecause this LP relaxation val : nother at rgure Lo why. -
vaiie : to the original discrete model must also belong to the larger relaxation feasible set.

be one of them, it hias as good an objective
he relaxation. In particular, it has as good
lution in the original model. It must be

If the relaxation optimum happens to
Function value as any feasible solution to t
an objective function value as any feasible so

optimal in the full model.

provides a lower bound (principle |

ison Boosters model in Table

gramming relaxation of the B
ired of y-components in the

Compute (by inspection} the optj i :
optimal solution value and the LP i ; '
each of the following inte ¢ LP relaxation bound for : The third, I
QET Programs. Y e third, lipeax pro
i 12.2 illustrates. Even though integrality was not requ
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relaxation optimal sohution '

¥1=200, %2=0, J1=1, $=0

it happened anyway. This relaxation optimum i Hor .
and so optimal there. P m is feasible in the full discrete model

Compute (by inspection) optimal solutions to each of the following.re}axations ang

d termine h h T 1 CO 1 p P
thaf th 1
. eter whether we ca TEC, u(le e relaxation optimum is o U]nal m the

o

(a) The linear pmgrémming relaxation of

max  20x; +8x, + 2x3
5.t Xbxotxg =<1 -~
. x,x3=00r1

{b) The linear programming relaxation of
max & +x + x5
s.t. x1+x2§1”
x+x <1
Xy +xy <1
¥r.x,x3=00r]

(c) The relaxation obtained by dropping the first main constraint of

min  2x; + 4x; + 8x3
St X Fxtx <2
10x1 + 300 + 23 = 8

Anaysist X, X2, 53 =00r1

{a) The linear progrémming relaxation of this model is

-max 20x) + 8xp -+ 2x3
s.1. X1 +x+x <1
12y, 2,020

w1.th. obvious optimal solution % = (1, 0, (). Since this solution 13 also feasible in the
original model, it follows from principle f;

| that it is optimal there.

{b) The linear programming relaxation of this model is

max  xy + %3 + x5

5.1, X1+ <1
nta<l
x+an =l
L=x,%,0320

12.2 Relaxations of Discrete Optiﬂ_ﬂzation Maodels and Their Uses

with optimal solution & = (%% %) Since this solution violates integrality require-
ments in the origina model, it is infeasible there. It couid not be optimal.
(c) The indicated relaxation is
min  2xp -+ 4xz + 8xs
st 10x+ 3 +x3=8
: x.x%,x3=00r1
with obvious optimal solution & = (1, 0, 0). This relaxation optimum satisfies relaxed
constraint

Xyt <

and so is feasible in the original model. Tt follows from principle §&F " that it is

optimﬁl in the full integer program.

Rounded Solutions from Relaxations

When principle H applies, relaxation completely solves a hard discrete opti-
mization model. More commonly, things are not that simple. As with the EMS
solution {12:4) above, relaxation optima usually violate some constraints of the true
model.

All is hardly lost. First, we have the bound of principle . We may also
have a starting point for constructing a good heuristic solution to the full discrete
model.

Consider, for example, the EMS solution (12.4). The nature of model con-
straints {12.3), > form with nonnegative coefficients on the left-hand side, means
that feasibility of a solution is not lost if we increase some of its components. Begin-
ning from the LP relaxation optimum and rounding up produces the approximate
optimal selution

Fo=[%] =101 =0
br =Th] =[11 =1
B o=l =1 =1
B =) =[31=1
Is =[%] =l31=1
B =% =[31=1
% = =i01=0
Iy =[] =11=1
R =[%) =[31=1

B = [l =111 =1

(12.5)
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with value 37,0, % = 8. Here ceiling notation _
[x] 2 least integer greater than or equal to x
The corresponding fleos notation .

|x] & greatest integer less that or equal to x

He-uristic op'timum % may not be truly optimal, but it does satisfy all constraints.
Wl‘lcre time permits no deeper analysis, this rounded relaxation solution might well
sufiice. Also; feasible solutions provide bounds to complement those obtained from

Set covering relaxation optima like {12.4) are particularly easy to round, be-
cause of the unusually simple form of the constraints. Many other forms admit
similar rounding. Some round infeasible refaxation solutions up, some round down
and some do other straightforward patching. Details vary with model form. ?

Unfortunately, there are some discrete models that just do not round. For an
example, return to our AA airline crew scheduling model (11.10) (Section 11.3).
Its set partitioning form closely resembles the set covering case we just rounded
easily. But set partitioning involves equality constraints. Each time we round some
infeasible %; up to 1 or down to 0, other variables sharing constraints with that x;
will also have to be adjusted if feasibility is to be preserved. Much more compleé
rounding schemes are required, and suceess cannot be guaranteed.

In each of the following mteger linear programs, develop and apply a scheme for
rounding the indicated LP relaxation optimum to an approximate sofution for the
| full model. - Also, indicate the best lower and upper bounds on the optimal integer
sotution value available from relaxation and rounding,

(2) min 10x; + 8¢ + 18x;  with LP relaxation optimum ¥ = {0, 1, %)
st 2xi+dxes+Tx; =3
X1+ +x3>1
X1,x2,x3=00r1
(b) max 40x; + 2x, + 18x5 with LP relaxation optimum x = (1, 0, %
st 2x + 1l +7x3 < 3

X1 +xp4+x3 <2

X, %2, x3=00r1

123 Stzonger LP Relaxations, Valid lné_qi:alitic_s, and Lagrangian Relaxations

(¢) min 3% -+ Sxz +20x3 + 14xs with LP relaxation optimum £ = (8,1 %g g

st.  xi+xp=11
3x1 + 6xy = 50
X1 < 1ixy
Xz < 11x4
X1,X3 = 0
X3, xs=0o0r1

Analysis:

(a) All main constraints of this model are > form, and coefficients on the left- hand
side are nonnegative. Thus increasing feasible variable values cannot cause a violka-
tion. We may round up to integer-feasible solution

[€1 = (01, 11, IS =0, L, 1)

Substztutmg this solution in the ob]ectlve function glves an upper bound (prmm-

(b) All main constraints of this model are < form, and coefficients on the left-hand
side are nonnegative. Thus decreasing feasible variable values cannot cause a viola-
tibn. We may round down to integer-feasible solution

€)= (111,10, 121y = (1.0, 0)
Subsututmg this solution in the objective function gives a lower beond (principle

1 ) of 40 on the optimal value, The corresponding upper bound, which is ob-
1290, is 47.71.

tained by substituting the relaxation optimal solution {principle [

(c) Each of the discrete variables in this mixed-integer linear program cccurs in
only one < constraint on the right-hand side. Thus increasing x3 and x4 from their
relaxation values cannot lose feasiblity. We may round up to

(6,2, 1401, 157) = (%, 1)
Notice that continuous variable values were not changed.
Substituting this solution in the objective function gives an upper bound (prin-
: |) of 7833 on the optimal value. The corresponding lower hound, which
1),1s 61.24,

is obtained by substituting the refaxation optimal solution (principle

12.3 STRONGER LP RELAXATIONS, VALID INEQUALITIES,
AND LAGRANGIAN RELAXATIONS

It should be obvious that we will detect infeasibility quicker {principle

sharper bounds (prmc1ple &

-

solution (principle

the relaxations we emﬁl y closely approximate the full model of mterest Strong
relaxations do just that.
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Analysis dealing with hard discrete models via relaxations will almost always find it
worthwhile to look for means to strengthen the relaxations without losing too much
tractability.

Stronger LP Relaxafions

To begin, let us will focus on the standard linear programming relaxations of ILP
models. How can we make such LP relaxations strong? The key insight sometimes
Surprises: ’

e
SRR

VW%WMQ#@&%%WQ
%@m“mé
Show (by mspectlon} that even though the two fo]lowmg mteger linear program-
ming models have the same feasible solutions, the second yields a stronger linear
programuoyng relaxation. :

max x+x;+x3 max X1 +x2 +x3
st xtxm=<l : st. i t+m=l
x+x<l X1+ <l
xmta <l i tx3 <1

X1 +xp4xs <1
X, xa, k3 =00r1

X1, X2, X3 =0orl

Analysis: Both ILPs have the same feasible solutions,

xM = (1,0,0)
@ = (0, 1,0)
x® — (0,0, 1)

)

Thus they are both valid modéls of the same problem. Still, the first has LP relaxation

' optimum % = (4, 4, 1), and the second has relaxation optimmum % = (1, 0, 0) (among

others). The corresponding relaxation bounds are % and 1, making the second relax-
ation stronger. In this simple case, in fact, it yields a discrete optimum (via principle

Choosing Big-M Constanis

The “sufficienily laxge” big-M constants needed in so many models offer one easy
family where details of ILP modeling affect the LP relaxation. Return, for instance,

12.3 Stronger LP Relaxations, Valid Inequalities, and Lagrangian Relaxations

'to the tiny Bison Boosters modet of (12.2) and ‘Table 12.2. Tn formulatirig switching

constraints x; < 400y, and x3 < 75y2, we constructed values 400 and 75 with a back-

of-envelope computation. Any sufficiently large M would yield a correct integer

linear programming model.. ’
Suppose that we had used 10,000 for both. The new model is

max  20x + 30xz — 550y — 720y2 (net income)

st.  LSx¢ 4 4x, <300 (display space)
xy < 10, 000y, {T-shirts if equipment) (126
xz < 10, 000y, {sweatshirts if equipment) ’
X x =0
yi.va=00r1l

Recall that the original model (12.2) had relaxation optimum
X1 = 200, -2 = 0, j”l = 1, j'iz =0

matching perfectly the discrete optimal solution with value $3450. Its LP relaxation
was indeed strong.
Revision (12.6) is every bit as correct as the original (12.2} in the sense that it
has exactly the same (discrete) feasible set. However, the LP relazation of (12.6)
vields optimum
5 =200, =0, 5 =002, ¥ =0 (1273

with value $3989. The value bound $3989 now differs significantly from the true
optimal value $3450. Also, the relaxation optimal sofution has component J; at a
tiny fractional value. With only {12.7) at hand, # would be hard to tell whether to
rent or not the T-shirt equipment.

This contrast between LP relaxations of integer-equivalent models (12.2) and
{12.6) highlights an impoertant and easy-to-implement principle for strengthening
relaxations:

We wish to decide which combination of 2 pharmaceutwdl facilities should be used
to produce 80 units of a needed product. One costs $5000 to setup and has variabie
cost $20 unit. The other cost $7000 to setup and has variable cost $15. Both have
capacity of 200 units.

(a) Formulate a mixed-integer linear programming model usin gcapacities forneeded
big-M’s.

(b) Strengthen the linear programming relaxation of your modet in part {a) by re-
ducing big-M’s i0 their smallest valid value.
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" Modeling:
(a) Using decision variables x; and x; for the amount produced in each facility, and
switching variables x; and x4 to track setups, a valid formulation is
' min  20x; + 15 + 5000x; + 7000x,
st. x4 xm =80
X < 200x;
= 200x -
x1,x2 =0
X3, Xg = Horl
Full capacity is available whenever setup cost is paid. ' ,
(b) Althotgh capacities are 200, the problem calls for only 80 units o be prodiced.
Thus neither x; nor x; will ever exceed 80 in an optimal solution. We may strengthen
the mode! by reducing big-M constants from 200 to 80, to produce.
min 20 + 15x; + 500025 -+ 7000x4
st xy+x2 =80
» X1 = _803(:3
- X7 = 80)64
X, x>0
X3, X4 = Oortl

The reader can verify that this new formulation has relaxation optimumXx = (80,0, 1,0)
with value $6600, versus the original model’s & = (80, §, .4, () at value $3600.

Valid Inequalities

Sharpening big-M coefficients is only one of many ways to strengthen LP relaxations.
We can also add new valid inequality constraints.

Relaxations can often be strenghtened dramatically by including vgiid_ineq,ualitiesf

that are not needed for a correct discrete model.

Not every valid inequality strengthens a relaxation. For example, all inequality
constraints of the original formulation are triviaily valid because they are satisfied
by every feasible sofution.

e

This need to cut off noninteger relaxation solutions is why valid inequalities are
sometimes called cutting planes.

123 Stronger L.P Relaxations, Valid Iuéqualiﬁes, and Lagrangian Relaxations

The Tmark facilities location model of Section T1.6 illustrates a classic case.
The model formulated there iS' '

min . ZZ (d i, j)xrj+ Z fiyﬂ

1-1 J=1 i=1

(total fixed costj

st z xy=1 forall j=1,...,14  (carry jload)
‘ ’ 14
1500y = ) dp;;  foralli=1,....8 (minimuom at {) (12.8)
J=1

14
> dpij< 5000y - foralli=1,....8 (maximum at 7}
i
x=0 foralli=1,...,8 =1, ;14"
yi=0o0rl forali=1,...,8
where x; ;if the fraction of region j’s call traffic handled by center i, y; decides whether
or not center / is opened, d;is the ant1c1pated call demand from region j, r; ; is the
unit cost of calls from region j to center i, and f; is the fixed cost of opening center i.
Focus on the third, maximum capacity set of constraints. Each forces discrete

variable y; to take on a value in the relaxation satisfying

Ytidp; , capacity used

Y= TT5000 T total available
For discrete modeling, these constraints do fine. Each y; must equal 1 if corresponding
x-variables are to use facility i at any level. In the LP relaxation, however, if x-
variables use caly a small part of the capacity, the corresponding y; will take on a

small fractional value,
The numerical values of Section 11.6 confirm this behavior. The LP relaxation

of formulation (12.8) has
i =0230, % =0.000, 3;=0.000, 3 =0301
s =0.113, F5=0.000, % =0000, 33=0630 (12.9)
total cost = $8036.60

with many of the 3;small.
Compare the optimal mixed-integer solution

yi=0 »;=0  xn=0 =1 _
=0 y=0 w=0 y=1 (12.16)
total cost = $10,153

Bound $8036 of (12.9) is only 79% of tru¢ optimal value $10,153. Also, (12.9) suggests

that 4 centers may be needed, while the optimum opens only 2.
Even when a center is used only fractionally, it may fulfiil the whole demand

for some single district. Such thinking suggests valid inequalities
wn <y foralli=1,....8 j=1....14 (12.11)

which require that the fraction a ceater is opened be as great as the fraction of any
region’s demand satisfied from the center.
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Certam[y, these mequahtles satisfy vahdlty definition |
satisfied by every mteger -feasible solution to model (12.8). Also it is easy to ful-
fill requirement | by finding solutions to the relaxation of (12.8) that violate
(12.11). :

Adding these valid inequalities improves the LP relaxation dramatically. The
strengthened model has optimal solution

y1=0000, ¥ =0.000, 3 =0000, 3,=0537
¥5=10.000, #=0000. 3;=0000 Fg=1.000
total cost = $10,033.68

Its bound $10,033 is almost 99% of optimal value $10,153, and only one discrete
variable comes out fractional. Addition of the valid inequalities (12.11) has produced

" a nuch stronger relaxation, whlch provides miuch better information about the forin

ofa d:screte optimum.

TR

Consider the TLP

max  3xp + 14x; + 18x3
5.1 3% + 5}(2 + 6)(3 < 10
x,x,x3=00rl

with LP relaxation optimum & = (0, ¢ 3, 1). Determine {by inspection} whether each
of the following inequalities is valid for this model, and if so, whether adding it would
strengthen the LP relaxation.

(A)xa+xs=<1
(b)xl +x2+x3 =<1
{c) 3% + 5% <10 o

Fo A

161 and principle |-

Analysis: We apply definition [

(a} It is obvious from the main constraint that no feasible solution can have both
= 1 and x3 = 1. Thus the constraint is valid. Also, the cirrent LP relaxation
optimum is one LP-feasible solution that violates the inequality because
BHti=3+1£1
it follows that the constraint wiil strengthen the relaxation.

{b) This constraint is not valid. For example, x = (1, 0, 1) violates the constraint even
though it is integer-feasible in the given model.

{c) This constraint is valid, because any integer-feasible solution satisfying main con-
straint 3x; + Sxz + 6x3 < 10 certaindy has 3x + Sx; < 10. Stll, this will also be true
of all feasible solutions in the LP relaxation. Adding the ineguality cannot improve

the relaxation.

' Lagrangmn Relaxations

Even when the given maodel is an ILP, the strongest practical relaxation may not be
the LP form obtained when integrality constraints are dropped. Lagrangian relax-
ations, which prove stronger for some model forms, adopt a completely different
strategy. Instead of dropping integrality requirements, they relax some of the main
linear constraints of the model. However, the relaxed constraints are not totally
dropped. Instead, they are dualized.or weighted in the objective function with suit-
able Lagrange multipliers to discourage violations.

Lagrangian Relaxation of the CDOT Example
We can illustrate with the CDOT generalized assignment model {11.13) of Section
11.4:
min  130x,1 + 460x 3 + 40x1,3 + 3021 + 150x2 2 -+ 3700z 3
4+ 510x3 1 + 20%5 2 + 120x3 3 + 30xs,1 + 40x45 + 3902y 3
+ 340x51 + 30xs5 2 + 40x55 + 20xs 1 + 450x5 2 + 30%43

st xztxzt+xiz=1 (district 1)
xpitmataz=1 (district 2)
X31+X32+x33 =1 (district 3)
x4tz a3 =1 (district 4)
x50t x5+ xs53 =1 (d%str%ct 3) 12.12)
X61+ 62 +Xe3 =1 {district 6}
30x1,1 +350x01 + 10x3y Estevan
- 11X4,1 + 13x51 + 9x6,1 ' < 50

10x) 2 + 20855 + 60x3.2 (Mackenzie)
+ 1042 + 105 7 + 17x52 < 50

T0x13 + 10x33 + 10x35 (Skidegate)
+15x43 +8xs55 + 12665~ <50

Xij = Oorl

i=1,6/=13
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" where
iy & { (1} i(f tg:::—;c:; is assigned to ship j
One strong Lagrangian relaxation dualizes the first 6 main constraints with
weights
v; & the Lagrange multiplier on the constraint for district J
The result is
min  130xy; + 460x 3 + 40x,3 + 30xy1 + 15002 + 370x3
+510x31 + 20x35 + 120x3 3 + 30x47 + 40x4 5 -+ 390xa 3
+340xs 1 -+ 30x5.2 + 40x5.2 + 20x6,1 + 450x6,0 + 305, 3
= X1 =X =Ry va(l =X = s xgE)
s xan - wsg - xms)ebva(l —xa - xey - xa)
+vs(l —x51 —Xs52 — Xs3) +vs(l — X671 — x50 — X6.3)
s.i. 30}1,1 + 5011 -+ 103y + 1lxgy + 13059 +9xg1 <50
1001 3 + 2032 + 60x32 + 10x43 + 10xs 5 + 17x62 < 50
T0x1 3 + 10xz5 -+ 10x33 + 15x45 + 8xs3 + 12x3 <30
xij=0orl i=1,6;j=1,3 '

Notice that the 6 equality constraints of full model (12.12) have not been com-
pletely dropped. instead they have been rolied into the objective function as in

- For example, the model (12.13) objective now includes the

(12.13)

copstroction
term

cEvs(l — X3 —x3p — X33) - (12.14)
Feasible solutions in this Lagrangian relaxation may very well have
X31+xsz+x33#F ] or (I—x31—x32—x33)#0

Bui if weight v3 # 0, violations will at least affect the objective value through (12.14).

Return to Bison Boosters example model (12.2):
max 20x; + 30x; — 550y, —- 720y,
st 1.5xy +4xy <300
~ 200y, <0
X2 — 75y2 <0
x1,x2 = 10)

vi,y2 =0or1

(a) Use multipliers vy and v; to form a Lagrangian relaxation dualizing the last two,
switching constraints.

(b} Indicate any required sign restrictions on multipliers v; and vs.

12.3  Stronger LP Relaxations; Valid Inegualitics, and Lagrangian Relaxations

Analysxs‘ We apply construction

{a) The Lagrangian reiaxation is formed by moving the two SWltchmg constraints to
the objective function as.

max 20)61 + 30x; — 550y — 720v; + v1(0 — x1 + 200y:) + v3 (0 — x; + 75y2)
s.t. 1.5x1 4+ 4x <300 .

X1, %2 = 0 )

yi,yp=00r1

(b) For = constraints in a maximize model, multipliers should satisty vy, vo > 0.

Fractable (Integer) Lagrangian Relaxations

Notice that the Lagrangian relaxation (12.13) keeps variables x;; discrete. Integrahty
requirements of the original (12:12) have not been dropped:: -

TETET

Lagrangian relaxations fulfill principle 1213 's mandate for increased tractabil-

ity by dualizing enough linear constraints that the remammg dlscrete problem is
manageable.

reveal how it conforms to requirement §
in exactly one main constraint. Thus these relaxatlons can be solved as a series
of single-constraint, knapsack ILPs (definition Iz, Section 11. 2), which are the
simplest of integer programs. There is one for each of the 3 ships.

Lagrangian Relaxation Bounds

Dropping linear constraints in a Lagrangtan relaxation | cannot eliminate any

solutions. That is, Lagrangian relaxations paralle} property £0444 in having every so-
lution feasible in the full model still feasible in the relaxation. But Lagrangian forms
are more complex than constraint relaxations because they modify both constraints
and objective. Fortunately, they still yield bounds.

(et T
E'M@éz; (e
B

Sign rules of definition |}] .
achieves no less in the objective function of the Lagrangian relaxation when we
maximize and no more when we minimize. Thus the relaxation optimum, which
either equals or improves on all these results for truly feasible solutions, must yield
a bound.
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Choosing Lagrange Multipliers

How strong the bounds o prove to be in any Lagrangian relaxation depends
on the multiplier values chosen. Some choices of v; will produce a very weak La-
grangian relaxation, and others can make it quite strong.

Methods for determining good Lagrange multipliers are beyond the scope of
_ this book, but we can illustrate their potential power with

V1 = 300, Vo = 200, V3= 200, IV4 = 45., V5 = 45, Ve = 30

in our CDOT example. The corresponding optimal value in Lagrangian relaxation
{12.13) is $470,000, which is much closer to the integer optimal valae of $480,000
than is the L.P relaxation bound $326,100.

Return to the Bison Boosters Lagrangian relaxation of Sample Exercise 12.12. Solve
{by inspection) the relaxation for each of the following choices of Lagrange multi-
pliers, and comment on the strength of the results.

(Ayvi=0wm=1
(b) ¥ = 3, V2 =3
Analysis:

/Géj For vi = 0, v» = 1, the Lagrangian relaxation reduces to

max  20x; + 29x; — 550y, — 645y,
st 1.5x; +4xp < 300

X, %2 2 0

¥1.y2 = Qorl

With only 0-1 constraints enforced on the y;, setting §, = y, = 0 produces a re-
laxation optimum. Correspending optimal choices for the continuous variables are
¥ = 200 and % = 0. The resulting relaxation bound of $4000 is weak because the
mixed-integer optimal value is $3450.

(b} For vi = v; = 3, the Lagrangian relaxation is

max  17xy +27x2 + 50y — 495y
st 1.5x +4x <300 '
X1, % >0
Y. Yz = Oorl

With only 0-1 constraints enforced on the y;, setting ¥; = 1, §2 = 0 produces a
relaxation optimum. Corresponding optimal choices for the continuous variablés
are again ¥; = 200, T, = 0. This time, the resulting relaxation bound of $3450 is very
strong because it exactly matches the true mixed-integer value.

12.4  Branch and Bound Search

17.4 BRANCH AND BOUND SEARCH =

Total enumerations of Section 12.1 are impractical for all but the simplest models
because every one of an explosively growing number of discrete selutions must be
considered explicitly. The process would become much more manageable if we could
deal with those solutions in large classes, determining for each whole class whether
it is likely to contain optimal solutions, and doing so without explicit enumeration
of all its members. Only the most promising classes would have to be searched in
detail. :

Branch and bound algorithms combine such a partial or subset enumeration
strategy with the relaxations of Sections 12.2 and 12.3. They systematically form
classes of solufions and investigate whether the classes can contain optimal solutions
by analyzing associated relaxations. More detailed enumeration ensues only if the
relaxations faii to be definitive.

EXAMPLE 12.2: RivErR POWER

As with so many other topics, an artificially small example will aid in owr develop-
ment of branch and bound ideas. Here we consider an operations problems at River
Power Company.

River Power has 4 generators cuirently available for production and wishes to
decide which to put on line to meet the expected 700-megawatt peak demand over
the next several hours. The following table shows the cost to operate each generator
{in thousands of dollars per hour) and their outputs {in megawatts).

Generator, j
1 2 3 4
Operating cost 7 12 5 14
Ouput power 300 600 500 1600

Units must be completely on or completely off.
We can formulate River Power’s problem as a knapsack problem like those of
Section 11.2. Decision variables

A { 1 if generator jis turned on

*I=10  otherwise
Then a model is
min  7x1 + 12x2 + Sx3 + Hxy (total cost)
gt 300x; + 600x; + 500x;3 4 1600x, > 700 {demand) (12.15)

X1, X3, x5, %3 =0o0r1

The objective function minimizes total operating costs, and the main constraint.as-
sures that the chosen combination of generators will fulfill demand. Total enumer-
ation establishes that an optimal solution use generators 1 and 3 and cost $12,000.

Partial Solutions

Much like the improving searches of most of this book, branch and bound searches
iterate through a sequence of solutions until we are ready to conclude optimality or
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Proof: For any u, by definition of L,

L{u) = ¢ E+u"(b— AZ)
= L@ —u" (b AT) +u' (b — AT)
= L@+ (u—u)" (b - A7)

Let % = (b AZ) and this completes the proof. O

Corollary 12.17 The dual objective L(u) is differenticble of o point @ if and
only if b; ~~ (a*) Tz is constant over T(%) for all 3. In this case, the gradient of
L(w) is given by (b— AF) for all T € T'(=).

The subgradient extends the concept of a gradient to nondifferentiable con-
cave/convex funetions. We have seen the importance of the dual problem and
some of its properties. Now let’s see how we can optimize the dual function.

12.5.1 Method 1: Subgradient Optimization

Subgradient optimization extends the method of steepest ascent to the dual
function which is concave and piecewise linear (see Proposition 12.10). See a
nonlinear programming text such as Bazaraa, Sherali, and [44] for a treat-
ment of gradients and steepest ascent algorithms. Unfortunately, moving in
the direction of a subgradient does not necessarily lead to an improvement in
the dual function. It is left as an exercise to construct an example problem
where moving in the direction of a subgradient does not necessarily lead to an
improvement in the dual objective function value. However, there is a rational
for moving in the direction of a subgradient.

Assume 7 is an optimal solution to the dual problem max,sp L(u). If w/ > 0

and 47 = g(z?) where 27 € I'(w¥) it follows from the definition of subgradient
that .

L(m) < L(w) + (@ — w/) T+
which implies
L{@) — L{v!) < (@ —u/) T4

But 7 is an optimal dual solution so L{() L(»’} > 0 which implies (7 —
w)T4% > 0. Then 4% makes an acute angle with the ray from «/ through
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7. Let w™ = max{0,u? + t;47} where ¢; is a positive scalar f:alled the step
size. Consequently, if ; is sufficiently small, the point »7*1 will be close%‘ fo
7 than 47, Thus, the sequence of dual sclutions generated by the sgbgra:d]ent
algorithm approaches an optimal solution, although the value of L{u?*1} is not
necessarily greater than L{u?).

Algorithm 12.18 (Subgradient Optimization Algorithmn)
Step 1: (Initialization) Let j — 0, v/ € (R™)T end ¢ > 0.
Step 2: v «— g(z?) where 7 € T(u).

Step 3: Let vt — max{0,u? + 1;+7} where t; is a positive scelar called the
step size.

Step 4: If [lu/t! — || < e stop else let j — j+ 1 and go to Step 2..
The question that remains is how to select the £; in order to guarantee conver-

gence. The fundamental theoretical result (see Held, Wolfe,and Crowil_er. [226]
and references therein) is that the sequence {L(u?)} converges to L{%) if the

_ sequence {t;} converges to zero and 3 77 t; = oo. The reason for the condition

SR ot = oo is to make the step sizes “large enough” to get from an initial
uOJ;o an optimal %. However, we want the £; — 0 so we can’t continually
“overshoot” w. It is common to determine the ¢; by a formula such as

0L - L(w))

S T
where §; is a positive scalar between 0 and 2. Often the 6; are determined by
setting 8y = 2 and. halving 8; whenever L(u) has failed to increase for some

(12.25)

fixed number of iterations. The term L* is an upper bound on the optimal

value L{1). By weak duality, one such valid bound is the value qf any pFimal
feasible solution. Getting a subgradient algorithm to work in practice requires a
considerable amount of “tweaking” the parameters. The best parameter values

are very problem specific.

Example 12.19 (The Generalized Assignment Problem} The generalized
assignment problem has the following generic form.

min iic-gj:ﬂij {12.26)

i=1 =1
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(GAP) s.t. Yowy=1, di=l...n (12.27)
i=1
n
> agws <bj, j=1...m (12.28)
i=1
zi; € {0,1} (12.29)

The problem was first introduced in Subsection 1.3.3 in Chapler 1. In this
formulation z;; = 1 if “lask” i is assigned to “server” j, U, otherwise. In
the objective function (12.26) ci; is the cost of assigning task i to server I
Constraint set (12.27) requires that every task is assigned ezacily one server.
If server § performs task i, a;; units of resource are consumed and server j has
b; umits of this resource available. Constraint set (12.28} does not allow server j
to exceed the resource available. The binary requirements (12.29) do not allow
any fractional assignments. See Fisher and Joikumar [149] for an excellent
description of how the generalized assignment problem arises as a subproblem
in capacitated vehicle routing problems.

In applying Lagrangian relazation to a problem it is necessary to figure out
which constraints to relaz (i.e. dualize). In the generalized assignment problem
this requires choosing between the assignment constraints (12.27) or the resource
limitation constraints (12.28). If the resource limitation constraints are relazed,
the resulting optimizotion problem is '

Lw) = min 33 (e +u50i)8i5 — Lje 4ibs

i=1f=1
i)
s.t. inj:}a 'i:l,...,?l
j=1
I"ij 1S {0, 1}

Tt is easy to show that the Lagrangian function L(w) has the integrality property
and for the optimal u, L{w) will equal the linear programming relazation value of
(GAP). The linear programming relazation for generalized assignment praoblems
is usually o very poor approzimation for the binary solution. It is usually much

better to relaz the assignment constraints so that the resulting duel function is -

ki3 T
L{u) = min 3 30", (e — w)miy + Z;ui
i=1 i=
k3
s.1. Zaijzij Sbj, ji=1...,m
i=1
g8 Ty € {0, l}

This Lagrangian function has considerable special structure. Ewven though it
does not have the integrality property and is an integer progrom, it separates into
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m distinct knapsack problems, one for each server. There are numerous special
purpose algorithms for solving knapseck problems. See the book by Martello
and Toth [313]. Since L{u) is optimized relatively casily given a u vector,
this Lagrangian function is o good candidate for subgradient optimization. We
illusirate the process on the specific exzample below.

min 9211 + 2119 + Tog + 2xan + 3231 + 83

T Ty =

Iy +Tor =

31 + T3z
6xy3 + 7wy + 9231 < 13
8Ty9 -+ Bwog + Gwge < 11

T11,T12,T21, T2, B3, T2 € 40,1}

The linear programming relazation solution for this ezample is given below.
QBJECTIVE VALUE = 6.42857120

OBJECTIVE FUNCTION VALUE

1) 6.428571
VARTARLE VALUE REDUCED..COST.. -
%12 1.000000 000000
x21 .571429 . 000000
x22 428571 . 000000
%31 1.000000 ~5.714288
ROW  SLACK OR SURPLUS DUAL PRICES
2) .000000 -2.000000
3) .000000 -2.000000
4) . 000000 -8.000000
5) .000000 .142857

Let u° be the optimel linear programming relazation dual variable values on the
assignment constraints. Then

L(uo) = min 7z +0xig ~ 291 -+ 0299 — bzgy + 0mag + 12
stk 6Bxyg +Txoy + 9231 <13
8%12 + 59y + brag < 11
Ty1,T12, Ta1, T2, T31, T3z € {0,1}



