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6. Consider the following problem: 7

7. Consider the following LP:
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(b) Use hand computations to carry out Phase II with the zero-artificial
variable as part of the starting basic solution. Make sure that the artifi-
cial variables never assume positive values.

(¢) Show that the zero-artificial variable can be driven out of the optimum
basic solution of Phase I (before we start Phase II) by selecting an en-
tering variable with a nonzero pivot element in the artificial variable
row. Then carry out Phase IT using the new basic solution.

5
/
Maximize z = 3x; + 2x, + 3x,

subject to
20+ xt x;=2 \
xt3n+ x=06
3, + 4x, + 25 = 8
XX X3 =0

(a) Use TORA to show that Phase I terminates with two zero-artificial vari-
ables in the basic solution.

(b) Show that when the procedure of Problem 5(c) is applied at the end
of Phase I, only one of the two zero-artificial variables can-be made
nonbasic. ’

(¢) Show that the original constraint associated with the zero-artificial vari-
able that cannot be made nonbasic in (b) must be redundant—hence, its
row as well as the artificial variable itself can be dropped altogether at
the start of Phase II.

Maximize z = 3x; + 2x, + 3x,

subject to

20+ Xt xy;=2 l

3 +4x, +2x, = 8
xl, xz, x3 = 0

The optimal simplex tableau at the end of Phase 1 is given as

Basic X1 X3 X3 X, X R Solutdion
z =5 0 -2 -1 —4 o Q
%, 2 11 0 1 0 2
R -5 0 —2 -1 —4 Al 0
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Show that the nonbasic variables xy, X3, x4, and x5 can never assume positive
values at the end of Phase II. Ience, their columns can dropped before we
start Phase IL. In essence, the removal of these variables reduces the con-
straint equations of the problem to x, = 2. This means that it will not be
necessary to carry out Phase II at all because the solution space is reduced
to one point only.

The general conclusion from this problem is that any nonbasic variables
that have strictly negative z-row coefficients at the end of Phase I must be
dropped from the tableau as they can never assume positive values at the end of
Phase II. Incidentally, negative z-row coefficients for nonartificial variables can
only occur if an artificial variable is basic (at zero level) at the end of Phase 1.

Consider the LP model

Minimize z = 2x; — 4x; + 3x,

e

subject to
Sxy, —6x, +2x;= 5
—x + 30, + 5= 8
2x, + 5x, —4x;= 4
Xy, Xg, 3= 0

Show how the inequalities can be modified to a set of equations that re-
quires the use of single artificial variable only (instead of two).

3.5 SPECIAL CASES IN SIMPLEX METHOD APPLICATION

This section considers four special cases that arise in the application of the sim-
plex method.

1. Degeneracy

2. Alternative optima

3, Unbounded solutions

4, Nonexisting (or infeasible) solutions

Our interest in studying these special cases is twofold: (1) to present a theo-
retical explanation for the reason these situations arise and (2) to provide a practi-
cal interpretation of what these special results could mean in a real-life problem,

3.5.1 Degeneracy

In the application of the feasibility condition of the simplex method a tie for the min-
imum ration may be broken arbitrarily for the purpose of determining the leaving
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variable. When this happens, one or more of the basic variables will be zero in the
next iteration. In this case, the new solution is degenerate.

There is nothing alarming about dealing with a degenerate solution, with the
exception of a small theoretical inconvenience, which we shall discuss shortly. From
the practical standpoint, the condition reveals that the model has at least one redun-
dant constraint. To be able to provide more insight into the practical and theoretical

impacts of degeneracy, we consider a numeric example. The graphical illustration

should enhance the understanding of ideas underlying this special situation,

Example 3.5-1 (DEGENERATE OPTIMAL SOLUTION).

Maximize z = 3x; + 9x,

subject to
X+ 4x, =8
X+ 2x=4
Xpx,=0
Let x5 and x, be slack variables. The simplex iterations are given in the following
tableux.
Iteration Basie Xy Xy X Xy Solutien
0 z -3 -9 0 1] o
x, enters Ky 3 4 1 0 8
Xx; leaves Xy 1 2 [¢] 1 4
1 z -1 0 3 0 18
x; enters X % 1 % 0 2
x, leaves X5 % a “% 1 0
2 z 0 0 2 3 18
{optimum) % 0 1 % “% °
x) 1 0 -1 2 0

In the starting iteration, x; and x, tie for the leaving variable. This is the reason the
basic variable x, has a zero value in Heration 1, thus resulting in a degenerate basic so-
lution. The optimum is reached after an additional iteration is carried out.

What is the practical implication of degeneracy? Look at Figure 3-4, which pro-
vides the graphicat solution to the model. Three lines pass through the optimum x; = 0,
X, = 2. Because this is a two-dimensional problem, the point is overdetermined and one
of the constraints is redundant. In practice, the mere knowledge that some resources
are superfluous can prove valuable during the implementation of the solution. The in-

b A B A AL A i

il ekt e s

A

3

a1 R S e

Sec. 3.6 Special Cases in Simplex Method Application 99
X2
3
~d
- - -
by :.':3'1_
| LY -~ '{--19*2
'lh... ~
o
. o
Optimal ~..
degenerate -
solution
7“; Xy
» Figure 3-4

formation may also lead to discovering irregularities in the construction of the model,
Unfortunately, there are no reliable techniques for identifying redundant constraints
directly from the tableau.

From the theoretical standpoint, degeneracy has two implications. The first deals
with the phenomenon of eyeling or circling, If you look at iterations 1 and 2 in the
tableaux, you will find that the objective value has not improved (z = 18).1t is thus con-
ceivable that the simplex procedure would repeat the same sequence of iterations, never
improving the objective value and never terminating the computations. Although there
are methods for eliminating cycling, these methods could lead to a drastic slowdown in
computations. For this reason, most LP codes do not include provisions for cyclmg, re-
lying on the fact that the percentage of such problems is too small to warrant a routine
implementation of the cycling procedures.

The second theoretical point arises in the examination of iterations 1 and 2. Both
iterations, although differing in classifying the variables as basic and nonbasic, yield
identical values of all the variables and objective value, namely,

=0 x=2 x=0 x=0 z=18

Is it possible then to stop the computations at iteration 1 (when degeneracy first ap-
pears), even though it is not optimum? The answer is no, because the solution may be
temporarily degenerate (see Problem 3.5a-2).

Problem set 3.5a

1. Consider the graphical solution space in Figure 3-5. Suppose that the sim-
plex iterations start at A and that the optimum solution occurs at D and
that the objective function is defined such that at A, x, enters the sclution
first,

(a) Identify (on the graph) the extreme points that define the simplex
method path to the optimum point.

(b) Determine the maximum possible number of simplex iterations needed
to reach the optimum solution,

@a “Show {(both graphically and by the simplex method) that the following LP is

temporarily degenerate.
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Figure 3-5

Maximize z = 3x; + 2x,
subject to
4z, + 3x, = 12
dx, + x, = 8
4y, — x,= 8
X% =0 .
3. Use TORA’s interactive option to “thumb” through the successive simplex it-
eration of the following LP (developed by E. M. Beale). The starting all-slack
basic feasible solution will reappear identically in iteration 7. The example il-

lustrates the occurrence of cycling in the simplex iterations and the possibility
of the simplex algorithm never converging to the optimum solution.

3 1
Maximize z = i 20x, + 2%~ 6x,
subject to

%xl - By~ xyt+ 9 =0

1 i
Exl —-12&’2—'5353-{-3)(450
X =1

Xy, X3 X3, % 2 0

Tt is interesting that if all the coefficients in this L.P are converted to integer
values (by using proper multiples), then the simplex algorithm will reach
the optimum in a finite number of iterations (try it!).
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i .
>\ 7\ Figure 3-6

(Warning: Do not use TORA’s automated option; otherwise, as expected,
the iterations will cycle indefinitely.)

3.5.2 Alternative Optima

When the objective function is parallel to a binding constraint (i.e., a constraint that
is satisfied as an equation by the optimal solution), the objective function will as-
sume the same optimal value at more than one solution point. For this reason they
are called alternative optima, The next example shows that there is an infinify of
such solutions. The example also demonstrates the practical significance of encoun-
tering alternative optima.

Example 3,5-2 (INFINITY OF SOLUTIONS).
Maximize z = 2x; + 4x,
subject to
X+, =5
xnt x=4
X, % =0

Figure 3-6 demonstrates how alternative opiima can arise in the LPY model
when the objective function is parallel to a binding constraint, Any point on the fine
.segment BC represents an alternative optimum with the same objective value
z =10,

The iterations of the model are given by the following tableaux.
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Fteration Basic X X, X5 b A Selution
0 . 2 -2 —4 4] 0 o]
X, enters X4 1 2 1 0 . 5
X3 leaves v Xy 1 1 0 1
1 (optimum). z ::- : 0 2 8] 10
X, enters Xy % i % 0 %
x, leaves X, % 4 —% 1 %
2 z o 0 2 10
{alternative %3 o 1 1 —1
optimun) x 1 o ~1 2 3

Tteration 1 gives the optimum x; = 0,x, = % ,and z = 10, which coincides with
point B in Figure 3-6, How do we know from this tableau that the alternative optima
exist? Look at the coefficients of the nonbasic variables in the z-equation of iteration
1.'The coefficient of nonbasic x, is zero, indicating that x, can enter the basic solution
without changing the value of z, but causing a change in the values of the variables.
Iteration 2 does just that--letting x,; enter the basic solution, which will foree x4 to
leave. This resulis in the new solution point at Clxy =3,x, =1z =10).

The simplex method determines only the two corner points B and C. Mathemat-
ically, we can determine all the points (£;, £;,) on the line segment BC as a nonnegative
weighted average of the points B and C. Thus, given 0 = & = 1 and

5
B: x1=0, X2=E

Cox=3 =1
then all the points on the line segment BC are given by
H=a0)+ 1+ a)3)=33a
5 3
= a(i) +{d-w()=1 +§a

When a = 0, (£, %) = (3,1), which is point C. When « =1, (£, %,) = ©,3),
which is point B. For values of o between 0 and 1, (&, £,) les between B and C,

In practice, alternative optima are useful because they allow us to choose
from many solutions without experiencing any deterioration in the objective
value. In the example, for instance, the solution at B shows that activity 2 only is at
a positive level, whereas at C both activities are positive, If the example represents
a product-mix situation, it may be advantageous from the standpoint of sales com-
petition to produce two products rather than one. In this case, the solution at C is
recommended. '
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Problem set 3.5b

1. For the following LP, find three alternative optimal basic solutions, and then
write a general expression for all the nonbasic alternative optima constitut-
ing these three basic solutions,

Maximize z = x; + 2x, + 3x,

subject to
x+ 2%, + 3¢, =10
0+ x = 5
Xy = 1
Xiy Xg X3 = 0
2. Show that all the alternative optima of the following LP are all nonbasic.

Give a two-dimensional graphical demonstration of the type of solution
space and objective function that will produce this result.

Maximize z = 2x; — x, + 3x,
subject to
Xy~ xy + Sxy =10
2%, — X, + 32, =40
XXXy =0

3. For the following LP, show that the optimal solution is degenerate and that
there exist aliernative solutions that are all nonbasic,

Maximize z = 3x; +x,y
subject to
x + 2x, 5
Xt ox— x= 2
Txy + 3x, — 52, =20

X, Xp X3 20

A

3.5.3 Unbounded Soiution

In some LP models, the values of the variables may be increased indefinitely without
violating any of the constraints, meaning that the solution space is unbounded in at
least one direction. As a result, the objective value may increase (inaximization case)
or decrease (minimization case) indefinitely. In this case, both the solution space and
the optimum objective value are unbounded.
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Unboundedness in a model can point to one thing only: The model is poorly
constructed, The most likely irregularities in such models are that one or more
nonredundant constraints are not accounted for, and the parameters (constants) of
some constraints are not estimated correctly.

The following examples show how unboundedness, both in the solution space
and the objective value, can be recognized in the simplex tableau.

Example 3.5-3 {(UNBOUNDED OBJECTIVE VALUE).
Maximize z = 2x; + xz'
“subject to
- x=10
2x, =40
=0

Starting iteration.

Basic x, x%, | Solution
z —2 0 0
X3 1 ¢ 10
X, 2 1 40

Int the starting tableau, both x; and x; are candidates for entering the solution. Be-
cause x; has the most negative coefficient, it is normally selected as the entering variable.
However, all the constraint coefficients under x, are negative or zero, meaning that x, canbe
increased indefinitely without violating any of the constraints, Because each unit increase in
x,willincrease z by 1, an infinite increase in x; wilt also result in an infinite increasein z, Thus,
the problem has no bounded solution. This result can be seen in Figure 3-7, The solution
space is unbounded in the direction of x,, and the value of z can be increased indefinitely.

The rule for recognizing unboundedness is as follows. If at any iteration the
constraint coefficients of any nonbasic variable are nonpositive, then the solution
space is unbounded in that direction. If, in addition, the objective coefficient of that
variable is negative in the case of maximization or positive in the case of minimiza-
tion, then the objective value also is unbounded. ’

Problem set 3.5c

1. In Example 3.5-3, show that if, according to the optimality condition, we
start with x, as the entering variable, then the simplex algorithm will lead
eventually to an unbounded solution.

Sec. 3.6
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Unbounded
objective
value

X1

Figure 3-7

Consider the LP:
Maximize z = 20x; + 10x; + x5
subj'ect to _
3x, — 3x, + 5x; = 50
x + x; =10
X; Xyt dxy =20
XXy X3 =0

(a) By inspecting the constraints, determine the direction (xy, x,, or X3) in
which the solution space is unbounded.

(b) Without further computations, what can you conclude regarding the op-
timum objective value?

In some ill-constructed LP models, the solution space may be un-

bounded even though the problem may have a bounded objective value.

Such an occurrence can point only to irregularities in the construction

of the model. In large problems, it may be difficult to detect the exis-

tence of unboundedness by inspection. Devise a procedure for deter-

mining whether or not a solution space is unbounded, and apply it to the

following model:

Maximize z = 40x;, + 20x, + 2x;

subject to
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3x, — 3x; + 5xy = 50
x; + x, =10

Xgy Xy X3 =0
3.5.4 Infeasible Solution

If the constraints are not satisfied simultaneously, the model has no feasible solution.
This situation can never occur if @/l the constraints are of the type = (assuming non-
negative right-hand-side constants), because the slacks provide a feasible solution.
For other types of constrairits, we use artificial variables. Although the artificials are
penalized to force them to zero at the optimum, this can occur ofily if the model has
a feasible space. Otherwise, at least one artificial variable will be positive in the opti-
mum iteration.

From the practical standpoint, an infeasible space points to the possibility that
the model is not formulated correctly.

Example 3,5-4 (INFEASIBLE SOLUTION SPACE).
Maximize z = 3x, + 2x,
subject to |
2%+ x,= 2
3x, + 4x, = 12
X %, =0

The following tableaux provides the simplex iterations of the model.

Iteration Basic x, X3 X5 X3 R Solution
0 z —3 34 24 M 0 0 —12¥
X, enters X3 2 1 0 1 0 2
x; leaves R 3 4 —1 0 1 12
1 -4 1+ 5M 3] M 2+ 4M 4 A — 4M
{pseudo- X5 2 1 0 1 0 2
optimm) R -5 0 -1 —4 1 4

Optimum iteration 1 shows that the artificial variable R is positive (= 4) which
indicates that the problem is infeasible. Figure 3-8 demonstrates the infeasible solution
space. The simplex method, by allowing tlie artificial variable to be positive, in essence
has reversed the direction of the inequality from 3x; -+ 4x; = 12 to 3x; + 4x, = 12,
(Can you explain how?) The result is what we may call a psendo-optimal solution.
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Psuedo-optimal
solution

Problem set 3.5d

1. Toolco produces three types of tools, T1, 72, and 73.The tools use two raw
materials, M1 and M2, according to the data in the following table:

Number of units of raw materials per tool

Raw material T T2 T3
7 M1 3 5 6
M2 3 3 4

"The daily availability of raw materials is 1000 units and 1200 units, respectively.
"The manager in charge of production was informed by the marketing depart-
ment that according to their research, the daily demand for all three tools must
be at least 500 units. Would the manufactuting department be able to satisfy
the demand? If not, what is the most Toolco can provide of the three tools?

2. Consider the LP model
Maximize z = 3x; + 2x, + 3x;
20+ i+ xy,=2
3x, +4x, + 2%, = 8
Xy Xy X320

Show by the M-technique that the optimal solution includes an artificial
basic variable. However, because its value is zero, the problem has a feasible
optimal solution.




