1.4 Assignment and Matching Models

of one decision cannot be assessed until we know how others are resolved. Such
circumstances often lead to quadratic assignment models.

11.16 | Quadratic assignment models minimize or maximize a quadratic objec-
tive function of the form

Z Z Z Z Cijk.c Xij Xk.t

i k=i {F

subject to assignment constraints} 11.14 |, where ¢;;x . is the cost (or benefit)
of assigning i to j and & to L.

Notice that each objective function term
Cijoko - Xij - Xk

involves two assignment decisions. Cost ¢; ¢ is realized only if both x;; = 1 and
v, = 1. That is. ¢;; 4, applies only if i is assigned to j and k is assigned to .

EXAMPLE 11.5: MALL LAYOUT QUADRATIC ASSIGNMENT

Some of the most common cases producing quadratic assignment models arise in
facility layout. We are given a collection of machines, offices. departments, stores,
and so on. to arrange within a facility. and a set of locations within which they must
fit. The problem is to decide which unit to assign to each location.

Figure 11.3 illustrates with 4 possible locations for stores in a shopping mall.
Walking distances (in feet) between the shop locations are displayed in the adjacent
table. The 4 prospective tenants for the shop locations are listed in Table 11.5. The
table also shows the number of customers each week (in thousands) who might wish
to visit various pairs of shops. For example, a projected 5 thousand customers per
week will visit both 1 (Clothes Are) and 2 (Computers Aye).

Distance (feet)

1 3 MNI1oo2 3 4
1 = Lt 150 170
2 80 — 1300 100
3| 150 130 120
4 | 150 w0 120 —

FIGURE 11.3 Mall Lavout Example Locations

Mall managers want to arrange the stores in the 4 locations to minimize cus-
tomer inconvenience. One very common measure is flow-distance. the product of
flow volumes between facilities and the distances between their assigned locations.
For example. if shop | (Clothes Are) is located in space 1. and shop 4 (Book Bazaar)
is located in space 2. their 7 thousand common customers will have to walk the 80

feet between the locations. This adds 7 - 80 = 560 thousand customer-feet to the
flow-distance.
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TABLE 11.5 Mall Layout Example
Tenants

Common Customers
with k (000’s)
Store, i 2 3
: Clothes Are
: Computers Aye

: Toy Parade
. Book Bazaar

Mall Layout Example Model

Notice that the flow-distance for any pair of shops cannot be computed un
know where both are assigned. This is the assignment combinations charact:
that yields quadratic assignment models.
Using the decision variables
5 ) 4 if shop i is assigned to location

Xij = .
0 otherwise

the required quadratic assignment model is

min S(SOX]_]X:_: + lSOX].],\.‘:__z + 170x1 1x2.4 (ShOpS 1 and 2)

+ 150x7 3%2. 1 + 130x1 3x2.2 + 120x13%2.4
+ 170x; 4x2.1 + 100x) 4x2 2 + 120x1 4X2.3)

2(80x1 1x32 + 150x7 1x33 + 170x1.1X3.4 (shops 1 and 3)
+ 80x1 2x31 + 130x7 2x33 + 100x1 2x3 4
4 150x7 3x3.1 + 130x) 3332 + 120x713%3 4
4+ 170x7 4x3.1 + 100x1 4x3.2 + 120x1 4x33)

7(80x; 1x42 + 150x1 1x43 + 170x1,1%4.4 (shops 1 and 4)
+ 80xy 2x4.1 + 130x7 2x4 3 + 100x1 2X4 4
4 150x; 3x41 + 130x7 3052 + 120x71 3%4 4
4+ 170x; 4Xs1 + 100x7 4242 + 120x7 4%43)

3(80x5 1x32 + 15022 1x33 + 170x2,1x3.4 (shops 2 and 3)
+ 80x3 2x3.1 + 130x72x3 3 + 100x2.2x3.4
+ 150x3 3x31 + 130x2.3x3.2 + 120x2.3%3.4
+ 170x5 4x3.1 + 100x5 4x32 + 120x5 4x33)

8(80x; 1x42 + 150x2,1x53 + 170x2.1 X34 (shops 2 and 4)
+ 80x3 2x41 + 130x7 2x4.3 + 100x72 2x4 4
+ 1505 3x4.1 + 130x2 3x4.2 + 120x2 3X4 4

+ 170x7.4x41 + 100x7 4x42 + 120x7 4x4.2)
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3(80x3 1.x12 + 150x3 1643 + 170x3,1X4.4
+ 80x32x4.1 + 130x32x43 + 100x3 2x4 4
+ 150x33x41 + 130x33%52 + 120x3.3X4 3
+ 170x3.4%4.1 + 100x3 452 + 12003 4%4.3)
st. xpp+tXxz2+Xi3t+Xa=
Xa1+x2t+x23+X24=

X3+ X323+ 0ne=

Xy FXa2 T X43 T X4

X1q+X21 +X30 X

T e

X12+ X202+ X3+ X0 =
x13 +x23+x3+x3=1
Xja+X2a+ X34+ X0 = 1
xg=00rl i=1li.es 4 T=l i 4

(shops 3 and 4)

(1. Clothes Are)

(2. Computers Aye)
(3, Toy Parade)

(4, Book Bazaar)
(location 1)
(location 2)
(location 3)
(location 4)

The objective function computes total flow distance for all pairs of shops and all
possible assigned locations. Assignment constraints assure that one shop goes to
each location and each locations gets one shop. An optimal assignment places shop

1 in location 1, shop 2 in location 4, shop 3 in location 3

a total flow distance of 3260 thousand customer-feet.

. and shop 4 in location 2, for

SAMPLE EXERCISE 11.11: FORMULATING QUADRATIC ASSIGNMENT MODELS

An industrial engineer has divided a proposed machine shop’s floor area into 12 grid
squares, g. each of which will be the location of a single machine m. He has also es-
timated the distance. d, o . between all pairs of grid squares and the number of units,
fon.m» that will have to travel between machines m and m’ (in both directions) during
each week of operation. Formulate a quadratic assignment model to layout the shop
in a way that will minimize material handling cost (i.e.. minimize the product of be-
tween machine flows and the distance between their locations). Assume dg ¢ = dg -

Modeling: Using the decision variables

NE if machine m is located at grid square g
X = i
e 0 otherwise
the required model is
12 12 12 12

min Z

m=1 g=1 m'=>m =l

,fm_m' d_;;,g'-rnr,,ﬂ Xm'.g'

12
s.t. Z g =1 m=l.i...12
g=1
12
Z Xmg = 1
m=1

xij=0o0rl m=1,....12:

(flow distance)

(square per machine)

(machine per square)

g=1yu00, 12
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We now describe how the optimal solution 1o a transshipment problem can be found
by solving a transportation problem. Given a transshipment problem, we create a balanced
transportation problem by the following procedure (assume that total supply exceeds total
demand):

Step 1 If necessary, add a dummy demand point (with a supply of 0 and a demand equal
1o the problem’s excess supply) to balance the problem. Shipments to the dummy and from
a point to itself will, of course, have a zero shipping cost. Let s = total available supply.

Step 2 Construct a transportation tableau as follows: A row in the tableau will be needed
for each supply point and transshipment point, and a column will be needed for each
demand point and transshipment point. Each supply point will have a supply equal to its
onginal supply, and each demand point will have a demand equal to its original demand.
Let s = total available supply. Then each transshipment point will have a supply equal
to (point’s onginal supply) + s and a demand equal to (point’s onginal demand) + 5. This
ensures that any transshipment point that is a net supplier will have a net outflow equal to
the point’s original supply, and, similarly, a net demander will have a net inflow equal to the
point’s original demand. Although we don’t know how much will be shipped through each
transshipment point, we can be sure that the total amount will not exceed s. This explains
why we add s to the supply and demand at each transshipment point. By adding the same
amounts to the supply and demand, we ensure that the net outflow at each transshipment
point will be correct, and we also maintain a balanced transportation tableau.




Transshipment occurs in the network in Figure 3.7 because the entire supply amount of
2200 (= 1000 + 1200) cars at nodes P1 and P2 could conceivably pass through any node of the
setwork before ultimately reachung their destnations at nodes D1, D2. and D3. In this regard,
cach node of the network with both input and ontput arcs (T1, T2, D1, and D2) acts as both a
source and a destination and is referred to as a transshipment node. The remaining nodes are ei-
ther puresupplynodﬁ{m and P2) or pure demand nodes (D3).

The transshipment model can be converted into a regular transportation model with six
sources (P1, P2, T1, T2, D1,and D2) and five destinations ( 71,72, D1. D2, and D3). The amounts

of supply and demand at the different nodes are computed as

Supply at a pure supply node = Original supply
Demand at a pure demand node = Original demand
Supply at a transshipmen: node = Original supply + Buffer amount
Demand at a transshi pment node = Onginal demand + Buffer amount
The buffer amount should be sufficently large 10 allow all of the original supply (or demand)
units to pass through any of the transshipmens nodes. Let B be the desired buffer amount. then
B = Total supply (or demand)
= 1000 + 1200 (or 800 + 900 + 500)
= 2200 cars

Using the buffer B and the umnt shipping costs given in the network, we construct the equivalent
regular ransportation model as in Table 5.43,

fD“\l 200 FIGURE 5.7
= Transshipment network between plants

and dealers

228 Chapter s Transportation Model and Its Variants

TABLE 5.43 Transshipment Model

71 2 Dl D2 D3
. 3 =1 i .
Pl ‘ | ~ M
I
L
1000
2 5 | {
P ‘ | 2| M M M |
| |
| o |
1200
o 7 3 —
n | | ; 6: M}
|
f 1 , B
[ M | 0 M & 9
n |I | ] ‘
| M M ll 1 Ve B
- 0 5
D1 ] ] ot
= | I
. | B
| M M | 9 T =
D2 i “i . -l
i
L 1 I J B
B B 300+B 9%0+H 500

= The sol‘uuon of the resulting transportation model (determined by TORA) is shown in
igure 5.8. Note the effect of transshipment: Dealer D? receives 1400 cars, keeps 900 cars to sar-

1efir ite demiand and cceda sho o -
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Chapter Ten o Network Flows

SAMPLE EXERCISE 10.17: IDENTIFYING MAXIMUM FLOWS

Determine by inspection the maximum flow from node 1 to node 4 in the following
graph (numbers on arcs are capacities i)

source

Analysis: Careful examination of the possibilities will establish that a maximum flow
sends 80 units from 1 to 4 as follows:

.
® %Q/IC?\;;Q

-

source (D\ g sink
)] KN

EXAMPLE 10.4: BUILDING EVACUATION MAXIMUM FLOW

Maximum flow problems arise most often as subproblems in more complex oper-
ations research studies. However, they occur naturally in evaluating the safety of
proposed building designs.’ Proper design requires adequate capacity for building
evacuation in the event of an emergency.

Figure 10.14 shows a small example involving a proposed sports arend. Patrons
in the arena would exit in an emergency through doors on all four sides that can
accommodate 600 persons per minute. Those doors lead into an outer hallway that
can move 350 persons per minute in each direction. Egress from the hallway is
through four firestairs with capacity 400 persons per minute and a tunnel to the
parking lot accommodating 800 persons per minute. Our interest is in the maximum
rate of evacuation possible with this design.

Part (b) of Figure 10.14 shows how we reduce this safety analysis to a maximum
flow model. Patron flows originate at source node 1. Outbound arcs model the four
doorways. The flows around the outer hall lead to the four stairways and the tunnel.
Persons exiting by any of those means pass 10 sink node 10. Capacities enforce the
flow rates of the various facilities.

We wish to know the maximum flow from 1 to 10, subject to the capacities
indicated. An optimal flow is provided in the arc labels of part (b). Patrons can
escape at a total rate of 2100 per minute.

Based in part on L, G. Chalmet. R. L. Frances, and P. B. Saunders (1982). “Network Models for
Building Evacuation.” Management Science, 28. 86-105. All numerical data and diagrams were made up
by the author of this book.

tu
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(a) Layout

(c) Optimal flow

FIGURE 10.14 Building Evacuation Maximum Flow Example

Return Arc Network Flow Formulation of Maximum

Flow Problems

As so far presented, neithe
one of Figure 10.14(b) is a minimum cost net
and capacity requirements are much like standard model

no costs, and flows do not balance at source and sink.
To create a true minimum cost flow problem. we add a return arc.

10.31 \ Return arcs balance unknown sourc
flow in an artificial arc from sink to source.

r the tiny example of Sample Exercise 10.17 nor the larger
work flow problem. Flow conservation

_but we have specified

e-to-sink flows by feeding back that

Adding a return arc to the maximum flow example of Figure 10.14(b) produces

the following digraph:
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