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FIGURE 6.13
Network for Problem 2, 8¢t 6.3

time. Formulate the problem as a shortest-route model using the following elemental
times for the different operations:

Operation Time {seconds)
Place one slice in cither side 3
Toast one side 30
‘Turn slice aircady in toaster 1
Remove slice from either side 3

4. Production Planning.  DirectCo sells an item whose demand over the next 4 months is
100, 140,210, and 180 units, respectively. The company can stock just snough supply to
meet cach month'’s demand, or it can overstock to meet the demand for two or more sue-
cessive and consecutive months, In the latter case, a holding cost of $1.20is charged per
overstocked unif per month, DirectCo estimates the unil purchase prices {or the next 4
months to be §15,512, $10, and $14, respectively. A setup cost of $200 is incurred each
lime a purchtase arder is placed. The company wants to develap a purchasing plan that
will mininiize the total costs of ordering, purchasing, and holding the item in stock.
Formulate the problem as a shortest-route model, and use TORA to fing the oplimum
solutio.

S. Knapsack Problem. A hiker has a 5-f° backpack and needs to decide on the most valu-
able items to take on the hiking trip. There are three items from which to choose. Their
volumes are 2, 3, and 4 ft*, and the hiker estimates their associated values on a scale from
01 100 as 30, 50, and 70, respectively. Express the probicm as a longest-route netwark,
and find the optimal solution. (Fin: A node in the network may be defined as [, v,
where / 1s the item number considered [or packing, and v is the volume remaining imme-
diately before the decision is made on £}

6.3.2 Shortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and
acyclic networks:

1. Dipkstra’s algorithm
2. Floyd's algorithm

6.3 Shortest-Route Problem 225

Dijkstra’s algorithm is designed to determine the sheriest routes between the
source node and every other node in the network. Floyd’s algorithm is general becanse
it allows the determination of the shortest route between any two nodes in the network.

Dijkstra’s Algorithm. Let u; be the shortest distance from source node 1 to nods 4/,
and define dy (= 0)as the length of arc (i, /). Then he algorithm defines the label for
an immediately succeeding node j a8

[l = li; + dy.i], dy = C

The label for the starting nede is [0, —], indicating that the nodc has no predecessor.
Node labels in Dijkstra’s algorithm are of two types: temporary and pernitent. A

temporary label is modified if a shorter route to a node can be found. At the point when

no better routes can be found, the status of the temporary label is changed to permanent.

Step 0. Labe! the source node (node 1) with the permanent label [0—]. Setdi = 1.

Step i, (a) Compute the temporary labels [w; + dj, ] for each node j‘ihat can be
reached from node i, provided j is not permanently labeled. Tf node fis
alrcady labeled with [i;, k] through another node k and if ¢, + dj; < n,
replace [, &} with [i; + &y, i,
(b L[ alf the nodes have permanent labels, stop, Otherwise, sclect the label
[,, 5] having the shortest distance (=u,) among all the temporary labels
{break ties arbitrarily). Seti = rand repeat step &

Example 6.3-4

The network in Figure 6.14 gives the routes and their-lengths in miles between city |
(node 1) and four other cities (nedes 2 to 5). Determine the shortest routes between
city 1 and each of the remaining four citics.

Iteration 0.  Assign the permanent label [0,—] to node L.

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently labeled) node
1. Thus, the list of labeled nodes (temporary and permanent) becomes

Node Label Staius
i [0, Permancnt
2 [0+ 100, 1] = [100, 1 Teinporary
3 {0+ 30, 1] = [30, 1] Temporary

FIGURE 6.14
Network example for Dijkstra’s
shortest-route aigorithin
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For the two femporary labels [100,1) and [30, 1], node 3 yields the
smaller distance (i; = 30). Thus, the status of node 3 is changed to per-

mancnt,
Heration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes
becomes
Node Label Status
1 [0,—] Permancnl
2 [100,1) ‘Temporary
3 130,13 Permanent
4 [30 + 10, 3] = [40, 3] Temporary
3 [30 + 60, 3] = [0, 3] Temporary

The status of the temporary label [40, 3] at node 4 is changed to perma-
nent (uy = 40).

Iferation 3. Nodes 2 and 3 can be reached from node 4. Thus, the list of labeled
nodes is updated as

Node Label Status
1 [0,—} Permanent
2 [40 + 15, 4] = [55, 4] Temporary
3 [30,1] Permanent
4 [40, 3] Permanent
5 [90,3] or [40 + 50, 4] = [90, 4]  Temporary

Node 2’s temporaty label [100,1] in iteration 2 is changed to [35,4] in
iteration 3 to indicate that a shorter route has been found through node
4. Also,in iteration 3, node 5 has two alternative labels with the same
distance us = 90, :
The list for iteration 3 shows that the label for node 2 is now perma-

nent.

lteration 4,  Only node 3 can be reached from nede 2. However, node 3 has a perma-
nent label and cannot be relabeled. The new list of labels remains the
same as in iteration 3 except that the label at node 2 is now permanent.
This leaves node 5 as the only temporary label. Because node 5 does not

lead to other nodes, its status is converted to permanent, and the process
ends.

The computations of the algorithm can be carried out more easily on the network
as Figure 6.15 demonstrates.

The shortest route between nodes 1 and any other node in the network is deter-
mined by starting at the desired destination node and backtracking through the nodes
using the information given by the permanent labels. For example, the following
sequence determines the shortest route from node 1 to node 2:

(2)— [55,4] —» (4) — [40,3] — (3} — [30,1] =+ (1)

Thus, the desired route is 1 — 3 — 4 — 2 with a total length ol 55 miles.
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Hogti
[55.4]e

[40,3] 5,

[90.3)i9y
0l

fﬂf]m
FIGURE 6.15

{ ) = iteration Dijkstra's lbeling procedure

TORA can be used to generate Dijkstra’s iterations, From the sowve/monrey
ment, select golve problen = Tverstions = Piikstra‘s algorithm. Figure 6.16 pro-
vides TORA’s iterations output [or Example 6.3-4 (file chToraDijkstraEx6-3-4.1xt).

B AR
FIGURE &.16
TORA Dijkstra ilerations for Example 6.3-4

o
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PROBLEM SET 6.3B

1. Thenctwork in Figure 6.17 gives the distances in miles between pairs of cities 1,2,... and
8. Use Diikstra’s algorithm to find the shortest route between the following cities:
{a) Cities Tand 8
(b) CiticsTandé
{¢) Cities4dand8
(dy Citics2and 6

FIGURE €.17
Netwark for Problem 1, Set 6.30

2. Usce Dijkstra’s algorithm 1o find the shortest route between node 1 and every other node
in the network of Figure 6.18.

FIGURE .18
Network for Problem 2, Scl 6.3b

3. Use Dijkstra’s algorithm to determine the-optimal solution of each of the following
prublems:

{a) Problem 1,Sct 6.3a
{b) Problem 2, Sct 6.3a
{¢) Problem 4,Sect 6.3a

Floyd’s Algerithm, Floyd’s algorithin is more general than Dijkstra’s because it
determines the shortest route between any two nodes in the network. The algorithm
represcnts an #-node network as a square matrix with n rows and 2 columns. Entry (i,/)
of the matrix gives the dislance d; from node i ta node j, which is finitc if { is linked
directly to j, and infinitc otherwise.
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FIGURE 6.19

Floyd's triple operation

The idca of Floyd’s algorithm js straightforward. Given three nodes 4, f, and & in
Figure 6.19 with the connecting distances shown on the three arcs, it is shorter to reach
k from { passing through jif

dij +ody < dy

In this case, it is optimal to replace the direct route from ¢ — & with the indireet route
i—j— k. This triple operation exchange is applicd systematically (o the nclwork
using the {ollowing steps:

Step 0. Define the starting distance matrix D, and node sequence matrix S5, as given
below. The diagonal elements are marked with (—) to indicales that they are
blocked. Set k = 1.

1 2 i "
[ ]
1 — dyy dy di,
- I = T A S
Dy =" : : : : ; :
i dy da . iy - s,
n Dy d dy — |
1 2 i n
i — | 2 i "
2 1 i n
Sa= i : ;
i 1 2 ] i
! 1 2 i —

General Step k. Define row k and column k as pivot row and pivot colwmin Apply thie
triple operation to each element d; in Dy for all 1and j. I the condition
dy v dy<dy ik j#k andi#])
is satisfied, make the following changes:
(a} Create D, by replacing d;in D,y with dy + dy;.
(b) Crealc S, by replacing 5;in S, with & Setk = k + T and repeat step k.
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Pivot
Column ~ column  Columa
i k 4q

T
P
]

Row

Pivot row &

FIGURE 6.20 Rowp

Implementation of triple operatioa in
matrix form

Step k of the algorithm can be explained by representing | as shown in Figure
6.20. Here, row k and column & define the current pivot row and column. Row i repre-
sents any of the rows 1,2,..., and & — 1, and row p represents any of the rows
k+1,k+2, ..., and n Similarly, column j represents any of the columns 1,2, ...,
and & — 1, 4nd column g represents any of the columns & + 1, & + 2, ..., and n. With
the triple operation, if the sum of the elements on the pivot row and the pivot column
{shown by squares) is smaller than the associated intersection clement (shown by a
circle), then it is optimal to replace the intersection distance by the sum of the pivot
distances.

After n steps, we can determine the shortest route between nodes 7 and f from the
matrices D, and S, using the following rules:

L. From D,, d; gives the shortest distance between nodes i and .
2. From §,,determine the intermediate node k = s, that yiclds the route i = k — 7.
If 55 = k and 5;; = j, stop; all the intermediate nodes of the route have been

found. Otherwise, repeat the procedure between nodes i and k, and between
nodes k& and j. :

Example 5.3-5

For the network in Figure 6,21, find the shortest routes between every two nodes, The
distances (in miles) are given on the arcs. Arc (3,5) is directional so that no traffic is
allowed from node 5 to node 3. All the other arcs allow traffic in both directions.

FIGURE .21
Network {or Example 6.3-5

Iteration 0.

Iteration 1.

Iteration 2.
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The matrices Dy and $; give the initial representation of the network. 2,
is symmetrical except thai ds; = oo because no traffic is allowed lrom
node 5 to node 3.

Th OB L3 0O ke
] jon i (8
| ;8|8
Lhode W) B e
} o o jon o

Sct k = 1.The pivot row and column arc shown by the lightly shaded
tirst row and first column in the Dy-matrix. The darker cells, ds; and dy,
are the only ones that can be improved by the triple operation. Thus, D,
and §) are obtained from Dy and Sy in the following manoer:

1. Replacedywithdy + di3 =3+ 10 = 13 and set 55 = 1.
2. Replace ds withdy + dj; = 10 + 3 = 13 and set s5; = 1,

These changes are shown in bold in matrices D, and 5.

D,
1 2 3 4 5 1

(=]
Ly i
=
h

[N
L e el o—
o fro e ] s
[OCY IO AT ]
oS E ER

‘! il fun [un

Set k = 2, as shown by the lightly shaded row and column in D,. The
triple operation is applied to the darker cells in D) and 8, "The resulting
changes are shown in bold in D, and S,.

D, S,

1 2 3 4 5 1 2 3 4 3
1 — 3 10 L] 1 — 2 3
2 3 — 13 5 2 ! — 1
3 i0 13 — 6 ] i ! -
4 8 5 5 — 4 2 2 3
5 00 >} o 4 — 5 1 2 3
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Iteration 3.  Set & = 3, as shown by the shaded row and columu in D, The new ¥ e ;
malrices are given by D, and §;. " AU /DR HIDELS

D, 8

[+
W
L=
L
ta
[58)
4o
T

ES S

e W D
EN RSN

wh

Heration 4. Setk = 4,asshown by the lightly-shaded row and column in D,. The
new matrices are given by D, and §,.

D, M
1 2 3 4 5 1 2 3 4 5
; T
1 -— 3 10 8 12 i — 2 3 2 4
2 3 — 11 5 9 2 1 — 4 4 4
3 10 11 — 6 10 3 1|4 1 =14 {4
4 g 3 6 | — g 4 2 {2 [ 3 =15
5 12 9 It 4 — 3 4 4 ) 4 4 — FIGURE .22
- TORA Floyd iterations for Example 6.3-3
Iteration 5. Set k = 5, as shown by the shaded row and colurhn in D, No further PROBLEM SET 6.3C
improvements arc possible in this iteration. Henee, D5 and S5 are the '
same as Dy and S, 1. InExample 6.3-5, use Floyd's algorithm f¢ determine the shortest routes between each of
The final matrices D; and S5 conlain all the information needed to the following pairs of nodes:

determine the shortest route between any two nodes in the network. For (2) From node 5tonode 1

example, consider determining the shortest route from node 1 te node 5.
First, the associated shortest distance is given by dys = 12 miles. To
determine the associated route, recall that a segment (J, f) represents a
dircel link only if s; = j. Otherwise, { and j are linked through at least

(b)Y Fromnode3tonode 3
(&) Fromnode 5tonode 3
(d) Fromnode 5 to node 2

one other intermediate node. Because 515 = 4, the route is initially given 2. Apply Floyd’s dlgorithm to the network in Figure 6.23. Ascs (7,6) and (6, 4) arc unidiree-
as 1 — 4 -+ 5. Now, because 5,4 = 2 # 4, the segment (3,4) isnot a tional, and all the distances are in miles. Determine the shortest route between the fol-
direct link, and 1 — 4 must be replaced with 1 ~» 2 ~» 4, and the route lowing pairs of nades:

14— 3 now becomes 1 — 2 — 4 — 5. Next, because sy, = 2, 834 = 4, {(a) Fromnode | tonede7

and s = 5, the route 1 — 2 — 4 > 5 needs no further “dissecting” and (b) From nade 7 to node 1

the process ends. (¢) Frommnode 6 1o node 7

3. TheTell-All mobile phone company services six geographical arcas. The satellite dis-
tances (in miles) among the six areas are given in Figure 6.24. Tell-All needs 1o determine
the most efficient message routes that should be established between cach two arcas in
the network.

As in Dijkstra’s algorithm, TORA can be used-1o generate Floyd's 1Le1dnons From
the gopviymwoprry menu, select golve problen = Iteragions = Floyd I

;xgt&z)é 22 fllustrates TORA's output for Floyd's Exanple 6.3-5 (file chGTor aFloydExﬁ- 4. Six kids—Joe, Kay, Jim, Bob, Rae, and Kim—play a variation of the game of hide and

scek. The hiding place of a child is known only to a select few of the other children. A
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5.

Transportation Model and its Variants

The demand for a perishabie item over the next four months is 400, 300, 420, and 380 tons,
respectively. The supply capacities for the same months are 500, 600,200, and 300 tons.
The purchase price per ton varies from month to month and is estimated at $100, $140,
$120, and $150, respectively, Because the item is perishable, a carrent month's supply
must be consumed within 3 months (starting with the current month). The storage cost
per ton per month is $3, The nature of the item does nol allow back-ordering, Solve the
problem as a transportation model by TORA, and determine the optimum delivery
schedule for the item over the next 4 months.

The demand for a special small engine over the rext five quarters is 200, 150, 308, 250, and
400 units. The manufacturer supplying the engine has different production capacities esti-
mated at 180,230, 430, 300, and 300 for the five quarters. Back-ordering is not allowed,
but the manufacturer may use overtime to fill the immediate demand, if necessary. The
overtime capacity for cach period is half the regular capacity. The production costs per
unit for the five periods are $100, $96, $116, $102, and $106, respectively. The overtime
production cost per engine is 50% higher than the regular production cost. If an engine is
produced now for use in later pericds, an additional starage cost of $4 per engine per
period is incurred. Formulate the problem as a transportation model. Use TORA to
determine the optimum number of engines to be produced during regular lime and over-
time of each period.

Periodic preventive maintenance is carried out on aircraft engines, where an important
component must be replaced, The number of aircraft scheduled for such maintenance
over the next six months is estimated at 200, 180, 300, 198, 230, and 290, respectively. All
maintenance work is done during the first two days of the month, where a used compo-
nent may be replaced with a new or an overhauled component. The overhauling of used
camponents may be done in a local repair facility, where they will be ready for use at the
beginning of the next month, or they may be sent to a central repair shop where a delay
of 3 months (including the month in which maintenance cceurs) is expected. The repair
cost in the local shop is $120 per component. At the central facility, the cost is only $35
per component. An overhauled component used in a later month will incur an additional
storage cost of $1.50 per unit per month. New components may be purchased at $200
each in month 1, with a 3% price inerease every 2 months. Formulate the problem as a
transportation mocel, and solve by TORA to determine the optimal schedule for satisfy-
ing the demand for the component over the next six months.

The National Parks Service is receiving four bids for logging at three pine [orests in
Arkansas. The three locations include 10,000, 26,000, and 30,000 acres. A single bidder can
bid for at most 50% of the total acreage available. The bids per acre at the three locations
are given in Table 5.15. Bidder 2 does not wish to bid on {ocation 1, and bidder 3 cannot
bid on location 2.

TABLE 5,15
Location
1 2 3
1 $520 $210 §570
. 2 _— $510 $d95
Bidder 5 | gan — $240
4 $180 5430 3710

5.3
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(a) In the present situation, we need to maximize the total bidding revenue for the Parks
Service. Show how the problem can be formulated as a transportation model.

(b) Use TORA to determine the acreage that should be assigned to each of the four
bidders. :

THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method {Chapter 3),
However, insteact of using the regular simplex tableau, we take advantage of the special struc-
ture of the transportation model to organize the computations in a more convenient form.

We must add that the special transportation algorithm was developed early on
when hand computations were the norm and the need for “shorteut” sotution methods
was warranted. Today, we have powerful computer codes that can solve a transporta-
tion mode! of any size as an LP. In fact, TORA uses the transportation mode! format
only as a screen “veneer” but handles all necessary computations in the background
using the regular simiplex method. Nevertheless, the algorithm, aside from its historical
significance, does provide insight into the use of the theoretical primal-dual relation-
ships given in Section 4.2 to achieve a practical result, that of improving hand compu-
tations. The exercise is theoretically intriguing.

To tacilitate the presentation of the details of the algorithm, we use the following
numeric example.

Example 5.3-1 {SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills.
The supply (in truckloads) and the demand (also in truckloads) together with the unit
transportation costs per truckload on the different routes are summarized in the trans-
portation model in Table 5.16. The unit transportation costs, ¢; (shown in the northeast
corner of each box), are in hundreds of dollars.

TABLE 5.16
Mill
1 2 3 4 Supply
10 2 20 11
1
Xy Xi2 1y 114 15
i2 7 9 20
Silo 2
Xa1 X2z o3 X34 25
4 14 16 18
3
X3 T X Xaq 10
Demand 5 15 15 15
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The model seeks the minimum-cost shipping schedule between the sitos and the mills,
This 1s equivalent to determining the quantity x; shipped from silo i to mill j
(i=123j=12734.

The steps of the transportation algorithm are exact parallels of the simplex
algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering variable from among all the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving

variahle frot among all the current basic variables, and find the new basic
solution. Return to step 2.

Determination of the Starting Solution

A general transportation model with m sources and » destinations has m -+ n con-
straint equations, one for each source and cach destination (see Example 5.1-1 for an
illustration), However, because the transportation model is always balanced
( sum of the supply = sum of the demand), cne of these equations is redundant.
Thus, the model has m + n — 1 independent constraint equations, which means that
the slarting basic solution consists of m + 7 — 1 basic variables. [n Example 5.3-1, the
starting solution has 3 + 4 — 1 = 6 basic variables.

The special structure of the transportation problem allows securing a nonartifi-
cial starting basic solution using one of three methods:?

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general, the
Vogel method yields the best starting basic solution, and the northwest-corner method
yields the worst. The trade-off is that the northwest-corner method involves the least
computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (rouie)
of the tableau (variable x;).

Step L. Allocate as much as possible to the selected cell, and adjust the associated
~amounts of supply and demand by subtracting the allocated amount.

*All three methods are featured in TORA's user-guided tutorial module. See Section 5.3.3,
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Step 2. Cross out the row or column with zero supply or demand 1o indicate that no
further assignments can be made in that row or column. If both a row and a
column net to zero simnultaneously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out row (column).

Step 3. If exacily one row or column is left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if arow
has been crossed out. Go to step 1.

Exahple 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic
solution in Table 5.17. The arrows show the order in which the allocated amounts are
generated.

TABLE 5.17

1 2 3 4 Supply
20 11

1 15
9

2 - 25
4 14 16

3 10

Demand 5 15 15 15

The starting basic solution is given as
X =5, 10 = 10
Xy =5, %53 =15, x5y =5
X3 = 10
The associated cost of the schedule is
z=53X10+10X2+5XT7T+15xX9+5x20+10x18= §520

Least-Cost Method. The least-cost method finds a better starting solution by
concentraiing on the cheapest routes. The method starts by assigning as much as
possible to the céll with the smallest unit cost (ties are broken arbitrarily). Next, the
satisfied row or column is crossed out and the amounts of supply and demand are
adjusted accordingly. If both a row and a column are satisfied simultaneously, only one
is crossed oul, the same as in the northwest-corner method. Next, look for the
uncrossed-out cell with the smatlest unit cost and repeat the process until exactly one
row or column is left uncrossed out.
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Example 5.3-3

The least-cost method is applied to Example 5.3-1 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= §$ 2). The most that can be
shipped through (1, 2) is x;; = 15 truckloads, which happens to satisfy both row 1
and column 2 simultancously. We arbitrarily cross out column 2 and adjust the
supply in row 1 to 0. _

2. Cell (3,1) has the smallest uncrossed-out unit cost (= § 4). Assign x;; = 5, cross
out column 1 because it is satisfied, and adjust the demand of row 3 to
10 —~ 5 = 5 truckloads,

3. Continuing in the same manner, we successively assign 15 truckloads to cell {2,
3), 0 truckloads to cell (1,4}, 5 truckloads to cell (3, 4), and 10 truckloads to cell

(2,4) (verify!). .

The resuiting starting solution is suthmarized in Table 5.18. The arrows show the
order in which the allocations are made. The starting solution (consisting of 6 basic
variables) is

Xp =15, x, = 0
X3 = 15, Xy = 10

Xy = 5, Xyg = 3

TABLES.18

1 2 3 4 Supply
10
1 15
;o
2 bo2s
Y 4
3| B 10

Demand 5 15 15 13

The associated objective value is
2= I5X2+0X NI+ XI+10X20+5%x4+5x18= $475

The quality of the least-cost starting solution is better than that of the northwest-
corner method (Example 5.3-2) because it yields a smaller value of z {$475 versus $520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally produces better starting solutions.
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Step 1. For each row (column), determine a penalty measure by subtracting the
smallest unit cost element in the row (column) from the aext smallest unit
cost element in the same row {column).

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the
selected row or column, Adjust the supply and demand, and cross out the
satisfied row or column, If a row and a column are satisfied simultancously,
only one of the two is crossed out, and the remaining row (column) is
assigned zero supply (demand).

Step3. (a) 1l exactly one row or column with zero supply or demand remains

uncrossed out, stop.

(b} If one row (column) with posifive supply (demand) remains uncrossed
out, determine the basic variables in the row (colwmn) by the least-cost
method. Stop.

(¢) If all the uncrossed out rows and columns have (remaining} zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

{d} Otherwise, go tostep 1.

" Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19 computes the first set of penaltics.

TABLE 5.19
1 2 3 4 Row penalty
10 2 20 11 0-2=3%8
1 15
12 7 9 20 9-~7=2
2 25
4 14 16 18 14 -4=10
3 5 10
5 15 15 15
Column penalty 10 - 4 7-2 16 ~ 9 18 - 11
=6 =3 =7 =7

Because row 3 has the largest penalty (=10} and cell (3,1} has the smallest unit cost
in that row, the amount 5 is assighed to x5 Column I is now satisfied and must be
crossed out. Next, new penalties are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty (=9). Hence, we assign the
maximum amount possible to cell (1,2), which vields x,, = 15 and simultaneously sat-
isfies both row 1 and column 2. We arbitrarily cross out column 2 and adjust the supply
mrow 1tozero.

Continuing in the same manner, row 2 will produce the highest penalty (=11),
and we assign ¥,; = 15, which crosses out column 3 and leaves 10 units in row 2. Only
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TABLE 5.20
1 2 3 4 Row penalty
1 2 20 11 9
15
2 7 9 20 2
25
3 14 16 18 2
18
15 15 15
Column penalty — ] 7 7

column 4 is left, and it has a positive supply of 15 units. Applying the least-cost method
to that column, we successively assign xyy = 0, x34 = 3, and x;; = 10 (verify!). Other
solutions are possible depending on how ties are broken. The associated objective
value for this solution is

z=15X2+0XII+15XG+10X20+5%X4+5X18=§475

This solution happens to have the same objective value as in the least—cost method.
Usually, VAM produces a better starting solution.

PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-corner, least-cost, and Vogel
methods for each of the following models:

(a) ®) ©
0 2 HI 1 2 6| 7 5 1 8|12
2 1 5|7 0 4 2|12 2 4 014
2 4 317 3 1 5|11 3 5 7
5 5 10 10 10 10 9 1 11

Iterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods in Section
5.3.1), we use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as
the current nonbasic variabie that can improve the solution. If the optimality
conditicn is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition.
Change the basis, and return to step 1.

The change of basis computations do not involve the familiar row operations
used in the simplex method. Instead, the special structure of the transportation model
allows simpler computations.
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Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner
solution.

Table 521 gives the northwest-corner starting solution as determined in Table
517, Example 5.3-2.

TABLE 5.21
1 2 3 4 Supply
i0 2 20 1t
1

5 10 15

5 12 7 9 20
5 15 5 25

4 1d 16 18
3 w1

Demand 5 15 15 15

The determination of the entering variabie from among the current nonbasic vari-
ables (those that are not part of the starting basic solution) is done by computing the
nonbasic coefficients in the z-row, using the method of multipliers (which, as we show
in Section 5.3.4,is rooted in LP duality theory).

In the method of multipliers, we associate the multipliers 1; and v, with row i and
column j of the transportation tableau. For each current basic variable x;, these multi-
pliers are shown in Section 5.3.4 to satisfy the following equations:

u; + v; = ¢, Tor each basic x;

In Example 5.3-1, 7 variables and 6 equations correspond to the six basic variables. To

solve these equations, the method of multipliers calls-for arbitrarily setting 1; = {), and
then solving for the remaining variables as shown below.

Basic variable (u, v) equation Solution
X wy + vy, = 10 iy = 0—=v, = 10
X3 w ot v, =2 ity = 0y, =2
X2y st vy = 7 vy = 23 ls =5
Xy wy vy =9 iy = S—vy =4
Xag Hy + vy = 20 y = S-—v, = 13
Xag uy + vy = 18 vy = 185suy =3

To summarize, we have
1 =0, 4 =5, 03=3
v =10, v, =2, vy =4, v, =15
Next, we use i; and v, 1o evaluate the nonbasic variables by computing
for each nonbasic x;

i; + Vi = G

The results of these evaluations are shown in the following table:
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Nonbasic variable U7 S Tl 7
X wytv;—ey=0+4—-20=—-16
X i tv, - =0+15-11=4
X iyt v, oy =5+10-12=3
Xy gty e =3+10-4=90
X gt vy — e =3+2-14=-9
X33 u3+u3—-(;33:3+4—162—9

The preceding information, together with the fact that u; + v, — ¢, = 0 for each
basic x,, is actually equivalent to computing the z-row of the simplex tableau as the fol-
lowing sumrmary shows.

Basic X X2 X13 Xy X X1 Xog X34 X33 X34

Because the transportation model seeks to minimize cost, the entering variable
is the one having the most positive coefficient in the z-row. Thus, x4 is the entering
variable. .

The preceding computations are usually done directly on the transportation tableau
as shown in Table 5.22, meaning that it is not necessary to write the (i, v}-cquations
explicitly. Instead, we start by setting u; = 0.3 Then we can compute the v-values of all
the columns that have basic variables in row 1, namely, v, and v,. Next, we compute u,
based on the (i, v)-equation of basic x5. Now, given u,, we can compute v; and v,
Finally, we determine u; using the basic equation of x;. Once ail the ’s and v’s have been
determined, we can evaluate the nonbasic variables by computing u; + v; — ¢; for each
nonbasic x;.'These evaluations are shown in Table 5.22 in the boxed southeast corner of
each cell.

TABLE 5.22
v = 10 vy = vy =4 v, = 153 Supply
10 2 20 11
w =0 5 10 15
=16 | 4
12 7 g 20
=5 3 15 5 25
7] 16 18
y =3 10 1
, | -9 -9
Demand 3 15 15 15

*The tutorial module of TORA is designed to demonstrate that assigning a zero initial valne to any » or v
does not affect the optimization results. See Section 5.3.3.
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Having determined x;, as the entering variable, we need to determine the leaving
variable. Remember that if xy; enters the solution to become basic, one of the current
basic variables must leave as nonbasic (at zero level). _

The selection of x3, as the entering variable means that we want 1o ship through
this route because it reduces the total shipping cost. What is the most that we can ship
through the new route? Observe in Table 5.22 that if route (3, 1) ships 8 (i.e., xyy = 8),
then the maximum value of § is determined based on two conditions,

1. Supply limits and demand requiremeénts remain satisfied.
2, Shipmients through all routes must be nonnegative,

These two conditions determine the maximum value of 8 and the leaving variable
in the following manner. First, construct a closed loop that starts and ends at the enter-
ing variable cell (3, 1). The loop consists of connected horizonial and vertical segments
only (no diagonals are allowed).* Except for the entering variabie cell, each comer of
the closed loop must coincide with a basic variable. Table 5.23 shows the loop for x,,.
Exactly one loop exists for a given entering variable.

TABLE 5.23

=0
iy =5
iy =3
Demand

Next, we assign the amount 8 to the entering variable cell (3, 1). For the supply and
demand limits to remain satisfied, we must alternate between subiracting and adding
the amount 9 at the successive corners of the loop as shown in Table 5.23 (it is immate-
rial if the loop is traced in a clockwise or counterclockwise direction). The new values
of the variables then remain nonnegative if

xp= S—8=0
Xy = 5—=06=0
X3q = 10-8=0

STORA’s tutorial module allows you to determine the cells of the closed loop interactively with immediate
[eedback regarding the validity of your selections. See Section 3.3.3.
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The maximum value of 8 is 5, which occurs when both x,; and x;, reach zero level.
Because only one current basic variable must leave the basic solution, we can
choose either x;, or xy, as the leaving variable. We arbitrarily choose xy; to leave the
solution.

The selection of x4 (=5) as the entering variable and x;, as the leaving variable
requires adjusting the values of the basic variables at the corners of the closed
loop as Table 5.24 shows. Because each unit shipped through route (3, 1) reduces
the shipping cost by $9 {(=u; + v; — cy), the total cost associated with the new sched-
ule is $9 X 5= §45 less than in the previous schedule. Thus, the new cost is
8520 — $45 = $475.

TABLE 5.24 &
=1 v, =2 v; =4 vy =15 Supply
=0 15
=3 i s 25
18
uy; =3 5 5 18
. -9
Demand 5 15 15

Given the new basic solution, we repeat the computation of the multipliers u and v
as Table 524 shows. The entering variable is x;,. The closed loop shows that x;, = 10
and that the leaving variable is x3.

The new solution, shown in Table 3.25, costs §4 X 10 = $40 less than the preced-
ing one, thus vielding the new cost $475 — $40 = $435. The new u; + v; — ¢, are
now negative for alt nonbasic x;. Thus, the solution in Table 5.25 is opmnal

TABLE 5.25
vy = —3 vy =12 vy = 4 vy =11 Supply
10 AN 20 il
wy =0 5 10 15
-13 —16
12 7 9 20
;= 5 10 15 25
-10 -4
4 14 16 i8
w =7 5 5 10
| s -5
Demand 5 15 15 15

5.3.3
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The following table summarizes the optimum solution,

Fromsilo Te mill Number of truckloads
1 2 3
1 4 10
2 2 10
2 3 15
3 1 5
3 4 5

Optimal cost = $435

Solution of the Transportation Model with TORA

We have already used TORA in an automated mode to solve the transportation
model. This section introduces TORA’s tutorial/iterative module, It also shows how the
same model is solved by Excel Solver and LINGO.

TORA’ Tutorial/Iterative Module. From sofvieiuady: o, select golve =
s, and then choose one of the three methods (northwest corner, least cost, or
Vogel) 10 start the transportation model iterations. The iterations module offers two
useful interactive features:

1. You cansct any u or v to zero before generating [teration 2 (the defaultis i, = 0).
Observe then that although the values of u; and v, change, the evaluation of
the nonbasic cells (=u; + v; ~ c;) remains the same. This means that, initially,
any w or v can be set to zero (in fact, any value) without affecting the optimality
calculations.

2. You can test your understanding of the selection of the closed loop by clicking (in
any order) the cells that constitute the path. If your selection is correct, the cell
will change color {green for entering variable, red for feaving variable, and gray
otherwise).

Figure 5.4 provides TORA’s iterations of Example 5.3-1 starting with the northwest-
corner method.

Excel Solver Solution. Entering the transportation model into an Exce! spreadsheet
is straightforward. Figure 5.5 solves'Example 53-1 (file ch5SolverTransportation.xls).
The template can be used fo sobve models of up to 10 sources and 10 destinations. It
divides the spreadsheet into input and output sections. In the input section, mandatory
data include the number of sources {cell B3), number of destinations (cell B4), unit
cost matrix (cells B6:K15), source names {cells A6:A13), destination names (cells
B5:KS5), supply amounts (cells L6:1.15), and demand (cells B16:K16). The output
section {cells B20:K29) provides the optimal solution in matrix form automatically.
The associated total cost is given in cell A19. We have arbitrarily limited the model size



