STUDY OF AIRLINES' CARGO HUB AIRPORT SELECTION BEHAVIOUR – AN EMPIRICAL STUDY IN TAIWAN

Taih-Cherng LIRN Assistant Professor Department of Logistics Management National Kaohsiung First University of Science & Technology Fax:+886-7-601-1040 E-mail: tedlirn@ccms.nkfust.edu.tw

Abstract

This research mainly employs AHP questionnaires to survey air cargo carriers served Taiwan, and to identify the important service attributes and the performance of the four major international airports in the Chinese-Asian region on these attributes. Of the fifteen service attributes that influence the twelve air cargo carriers' hub airport selection behaviour, "geographical location of airports" is perceived to be the most important service attribute, followed by congestion and delay, operational availability, bilateral agreement, local demand, political risk, and airport user charge. According to previous literature, these above-mentioned attributes are some of the most frequently reported service attributes which influence an airlines' hub airport's selection behaviour. However, this research is one of the few researches that rank the importance and performance of the hub airports' service attributes by using an empirical study through surveying major air cargo carriers served Taiwan.

Key Words

Hub Airport, Importance-Performance Analysis, AHP

1. INTRODUCTION

Taiwan's information and electronic manufacturing industry accounted for 23.6% of its manufacturing production in terms of value in 1995 (Fu, 1995). This figure grew to 36.43% in 2001, and is expected to reach 41% in 2011. Most of these information and electronic manufacturing products are heavily relied on a good air transportation network to meet the challenges presented by rapidly changing markets (Kasarda and Green, 2003). According to the Association of Asia Pacific Airlines (AAPA, 2005), the Freight Ton Kilometre (FTK) growth rate is 18% in the Asian region: this is one of the highest growth figures in the world. A nation with a regional hub airport not only provides many job opportunities for its citizens (Button, 2002), but also increases the nation's export of information and electronic manufacturing products through high-density air route networking and frequent flight

schedules. Thus, Taiwan's information and electronic manufacturing industry can seize market opportunities abroad as soon as they appear.

Currently there are four Taiwanese airlines and nineteen foreign airlines¹ providing direct air cargo services linking the Taipei International (CKS) airport in the Northern Taiwan with 66 airports abroad². According to the Association of Asia Pacific Airlines (AAPA, 2005), in the Asia Pacific region, three of the top ten air cargo origin-destination city pairs originated from or were destined for Taipei in the first half of 2005. In fact, of the top ten cargo sectors between the two cities, Taipei-Anchorage and Hong Kong-Taipei are ranked as the only two city-pairs with semi-annual cargo traffics larger than 100,000 tones. However, Hong Kong-Taiwan air cargo traffic increased by 0.8% and Taipei-Tokyo cargo traffic decreased by 15.3% in the first sixth months of 2005. A way to read the airlines' minds and to avoid a decline in air cargo traffic in CKS airport, a major air cargo hub in Taiwan, is very important, from this airport authority's viewpoint.

2. LITERATURE REVIEW

Gardiner et al. (2005) reviewed freighter operators' choice of hub airport through reviewing the published literature, and identified location, airport quality and third-party influences as key factors in carriers' choice of hub airports. Tretheway and Kincaid's (2005) study examined airport competition and made clear that airports can compete by utilising the "four P's of marketing" strategy, and also indicate that cargo traffic is very price sensitive. Takase and Morikawa (2005) investigated passengers' hub airport and destination choices in Japan using repeated cross-section disaggregate air passenger data. Ohashi et al. (2005) employed a two–stage least square technique to study factors influencing carriers' choice of air cargo transhipment airports to and from Northeast Asia and indicated that the airport's current traffic flow patterns, airport infrastructure capacity and activities, linkage with regional and intercontinental airport networks, service quality and airport cost are the five major factors that carriers used to choose an air transhipment hub.

According to Frits and Matthias' (2003) study on commercial passengers' air travel and the failure of the hub, new carriers are able to provide better service at a lower price by avoiding large-scale hubs. This is because congestion generated by the hub system has eroded air travel's speed advantage, especially on shorter trips. Marianov and Serra (2003) presented a system model to locate the optimal location of air transport hubs in airline networks to minimise total cost, taking air traffic congestion into account. Tsai and Su (2002) used analytical hierarchical process methodology to assess the political risk if the Taiwan government intends to develop an air logistics hub in northern Taiwan. They indicated that air

hub policy and inland freight policy are the top two factors influencing an airport's degree of political risk. Sasaki, Suzuki and Drezner (1999) considered the hub airport selection problem as a one-stop multiple allocation p-hub median problem, and formulated a cost-minimising algorithm model based on the number of passengers and the distance between the 25 U.S. cities they studied.

Nero and Black (1998) examined the increasing externalities associated with hub airports (including increase in environmental costs, e.g. airside and landside congestion, aircraft noise and emissions). Berechman and de Wit (1996) employed a simulation model to study the behaviour of a hypothetical single airline in a competitive market setting, relative to its choice of hub airport. They found that air travel demand patterns, airline cost and production structure, aircraft type and airport charges and capacity are the major factors influencing the chance of an airport becoming the dominant gateway hub in Western Europe.

The extant literature is mainly focused on either passengers', shippers' or forwarders' hub airport selection behaviour (see Table 1); however, hub airports are highly dependent on airlines' patronage to thrive (Tretheway & Kincaid, 2005). There is no empirical research that surveys air cargo carriers' perceptions of the importance and performance of attributes influencing carriers' hub airport selection.

14010	i major innucliente lactors of	
Authors (year)	Research Foci	Major influencing factors reported
Gardiner et al. (2005)	Freighter's choice of airport	Location, airport quality, third-party
		influences
Tretheway & Kincaid	Airport Competition	Price sensitive
(2005)		
Takase & Morikawa	Passengers' hub airport	Passenger flow
(2005)	selection	
Ohashi, Kim, Oum,	Forwarders'/shippers'	Traffic flow patterns, airport
& Yu (2005)	choice of air cargo	infrastructure capacity, connecting
	transhipment airport	times, service quality, airport cost.
Frits & Matthias	Carriers' selection of hub	Airside congestion
(2003)	airport	
Marianov & Serra	Location of air transport	Air traffic congestion
(2003)	hub	
Tsai & Su (2002)	Air logistics hub in Taiwan	Air hub policy, inland freight policy
Sasaki, Suzuki,	Hub airport selection	Number of passenger & distance
Drezner (1999)		between airports' service networks
Nero & Black (1998)	Hub airport externalities	Airside & landside congestion,
	_	airport noise & emission
Berechman & de Wit	Choice of hub airport	Air travel demand patterns, airline
(1996)		cost & production structure, aircraft
		type, airport charges, airport capacity

Table 1 Major influencing factors on a hub airport selection

Source: this research

3. RESEARCH METHODOLOGY

The AHP model is employed because the numbers of air cargo carriers that serve the C.K.S. airport is very limited, meaning that the traditional Multivariate Analysis of Variance technique is not appropriate in this study. AHP includes four axioms: reciprocal relation, relation, pairwise comparison of homogeneous elements, hierarchic and systems dependence, and expectations about the validity of the rank and value of the outcome. The three steps involved in AHP applications are summarised below (Cheng et al., 2006):

1. Construct decision hierarchy with criteria related with the decision goal.

2. Collect input data to perform pairwise comparison of all the decision criteria.

3. Use an eigenvector method to estimate relative weightings of decision criteria.

4. Obtain a composite weight by aggregating the relative weights up the hierarchy to represents the relative importance of each alternative.

4. RESEARCH DESIGN AND STRUCTURE

A brainstorming session was held with three academicians in the National Penghu University to classify factors influencing carriers' hub airport selection into a hierarchical model, as shown in figure 1. Questionnaires were posted to two major Taiwanese airlines and eighteen leading foreign cargo airlines serving the CKS airport in 2006³.

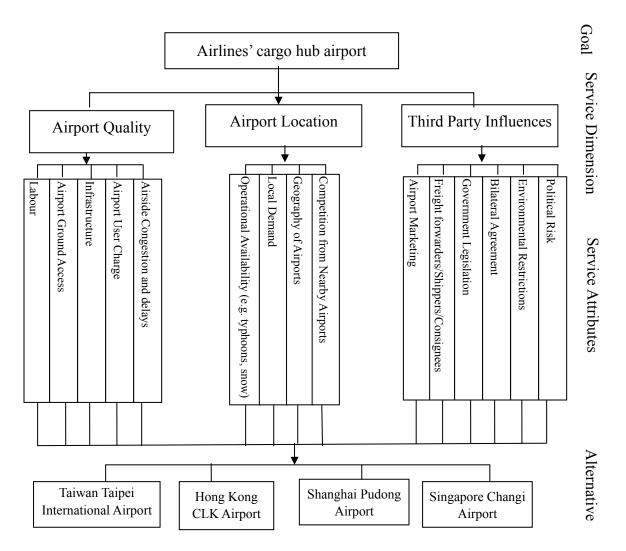


Figure 1 Airlines' freight hub airport selection and decision-making model Source: adapted from Gardiner et al. (2005).

5. RESEARCH FINDINGS FROM PILOT STUDY

In the beginning of this research, a pilot survey were carried out through the author's personal networking, questionnaires were distributed to friends work in two national carriers and two foreign carriers respectively, and all the questionnaires were returned.

As shown in Figure 2, the 'political risk' (PR) and 'congestion and delay' (CD) service attributes were found to be important and the average performance of these two attributes was below the median value of the 15 service attributes employed to construct Figure 1. Put simply, the four airports in the Chinese-Asian region should spend resources to improve these two service attributes to make themselves become attractive to transhipping air cargo users.

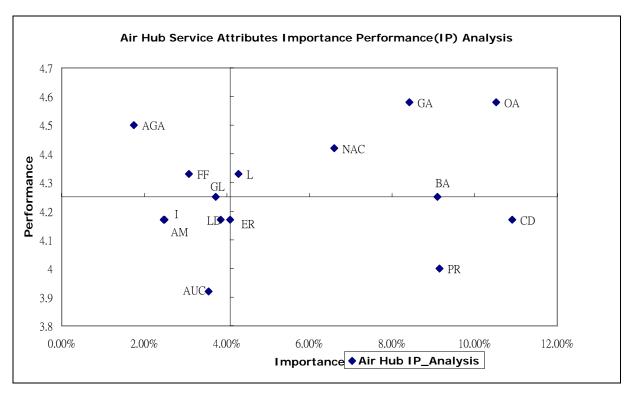


Figure 2 Importance-Performance Analysis of Airlines' Cargo Hub Selection Criteria in the Pilot Study

Abbreviations: AM: Airport Marketing, GA: Geography of airports, LD: Local Demand, OA: Operational Availability, NAC: Nearby Airports' Competition, CD: Congestion & Delay, AUC: Airport User Charges, I: Infrastructure, AGA: Airport Ground Access, L: Labour, PR: Political Risk, ER: Environmental Restrictions, BA: Bilateral Agreements, GL: Government Legislation, FF: Freight Forwarders/ Shippers/Consignees, AM: Airport Marketing. Source: this research

6. RESEARCH FINDINGS FROM MAIN STUDY

After the successfully returned of the questionnaires in pilot study, twenty copies of questionnaires (see the appendix) were posted to major cargo carriers served Taipei International Airport. Telephone contacts were made before questionnaires were sent to the twenty surveyees. Surveyees who had replied in the pilot study were not included in the main study to avoid response bias generating by their learning effect. Souvenirs were also posted together with questionnaires to increase surveyees' response rate. Twelve copies of questionnaires were replied by these cargo airlines staffs who are managers and senior staffs work in their business department or R&D department (see Table 2.). As many respondents are managers/senior staff who often travel within the Chinese-Asian region, and this enable them to evaluate the performance of the four major airports in the Chinese-Asian region confidently. Thus credibility of the research result is enhanced.

Company	А	В	С	E	F	G
Job Seniority (yrs.)	10+	10+	10+	10+	10+	10+
Job Scope	Business	Business	Business	Manager	Business	Business
Company	Н	I	J	К	L	М
Job Seniority(yrs.)	3~7	10+	10+	10+	10+	10+
Job Scope	R&D	R&D	Manager	Manager	Business	R&D

Table 2 Some of Respondents' Profiles

Source: this research.

A very similar research results to the pilot survey were found in the main study. The importance of each service attributes is ranked in the Table 3. The three major service dimensions have a very similar degree of importance. Summary of the consistency ratio from different surveyees' replies is used as the goodness of fit test for AHP technique (see Table 4).

Table 2	Importance	ronkings o	foorgok	hub airporter	convice attributes
Idule 3	IIIIDUItatice	Talikilius u	i caruo i		service attributes

Service Dimensions	Service Attributes	Average Weight (Importance)	Ranking
Airport Quality (AQ)		0.31	
AQ	Labour	0.040	13
AQ	Airport Ground Access	0.052	10
AQ	Infrastructure	0.054	9
AQ	Airport User Charges	0.067	7
AQ	Congestion & Delay	0.096	3
Location (L)		0.350	
L	Operational Availability (e.g. Weather)	0.051	11
L	Local Demand	0.108	2
L	Geography of airports	0.111	1
L	Nearby Airports' Competition	0.080	6
Third Party Influence (TPI)		0.341	
TPI	Airport Marketing	0.017	15
TPI	FFW/Shippers/Consignees	0.036	14
TPI	Government Legislation	0.057	8
TPI	Bilateral Agreements	0.095	4
TPI	Environmental Restrictions	0.049	12
TPI	Political Risk	0.088	5

Source: this research.

Service Dimensions Consistency Ratio	Airport Quality	Location	Third Party Influence	Overall Goal
Respondents				
1 British Asia Airway	0.03	0.09	0.05	0.00
2 Cathay Pacific	0.10	0.02	0.09	0.00
3 TNT	0.00	0.00	0.09	0.00
4 Saudi Arabia Airlines	0.08	0.03	0.08	0.17
5 Northwest Airlines	0.04	0.02	0.10	0.00
6 Singapore Airlines	0.10	0.02	0.09	0.00
7 Anonymous Carrier F-1	0.02	0.04	0.05	0.00
8 Anonymous Carrier F-2	0.04	0.01	0.04	0.01
9 Anonymous Carrier TW-1	0.00	0.01	0.00	0.00
10 Anonymous Carrier TW-2	0.02	0.00	0.01	0.00
11 Anonymous Carrier T-1	0.05	0.02	0.12	0.00
12 Anonymous Carrier T-2	0.04	0.10	0.13	0.14

Table 4 Summary of the consistency ratio from different surveyees' replies

Source: compiled result from this research.

Critical service attributes are the attributes have an above median value of importance but have a below median value of performance, and they are located in the lower right quadrant in Figure 3. Again, the Congestion & Delay (CD) and Political Risk (PR) were perceived as critical service attributes by these cargo carriers. In addition, the Airport User Charge (AUC) was also perceived as a critical service attribute in the main study. This may result from the fast hiking of jet oil price between the time of pilot study and the time of main study. Expensive jet oil cost makes cargo carriers more sensitive to Airport User Charge (AUC) as these carriers are struggling to make their both ends meet. International airports in Hong Kong and Shanghai have a much higher landing fee for a Boeing 747-400 than their counterparts in Seoul and Singapore (Ohashi et al, 2005).

The rankings of the four cargo hub airports' overall performance perceived by the 12 carriers surveyed do reveal that Hong Kong CLK has the best overall performance, despite its highest AUC (airport user charges) among these four airports. Singapore's and Hong Kong's overall performances are very close, and Taipei International airport outperforms Shanghai Pudong with a minor margin (see Figure 4 and Table 5). In short, the Shanghai Pudong airport is perceived to have the poorest performance among the four airports surveyed.

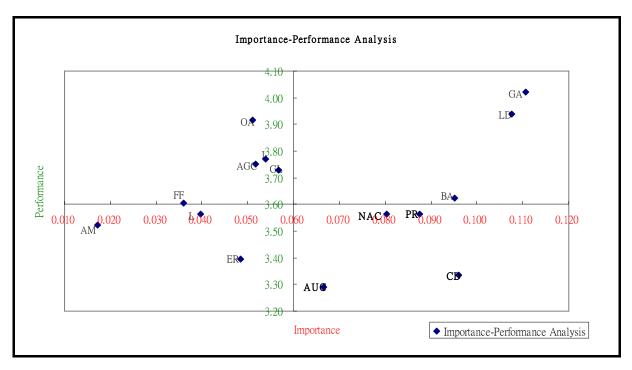


Figure 3 Importance-Performance Analysis of Air Carriers' Cargo Hub Selection Source: this research

Abbreviations: AM: Airport Marketing, GA: Geography of airports, LD: Local Demand, OA: Operational Availability, NAC: Nearby Airports' Competition, CD: Congestion & Delay, AUC: Airport User Charges, I: Infrastructure, AGA: Airport Ground Access, L: Labour, PR:Political Risk, ER: Environmental Restrictions, BA: Bilateral Agreements, GL: Government Legislation, FF: Freight Forwarders/ Shippers/Consignees, AM: Airport Marketing

Of the four service dimensions presented in the Table 5, Singapore Changi airport has the best performance on the airport quality. Hong Kong's Chek Lap Kok (CLK) airport has the best performance on the two other service dimensions, namely, location service dimension and third party influence service dimension. Shanghai Pudong airport was perceived to have the worst performance on all the service dimensions, thus it has the poorest overall performance.

However, as one of the surveyees indicated that Taiwan's air cargoes transport growth rate has already slowed down significantly since 2003. Because of carriers' strategic alliance practice and transhipment policy prevails among the Asian air cargo markets, every kilometer ton of Europe and North America bound Asian air cargoes can generate four kilometre tons of transport activities within the Asia region. Eastern China exportes many air cargoes that are currently transhipped through Hong Kong CLK airport, although the CLK has a much higher airport user charges than the CKS airports in Taiwan. If a cross-Taiwan Strait direct air links cannot be established within a short time period, then this surveyee has predicted that the CKS airport's overall performance will be ranked the last in the very near future.

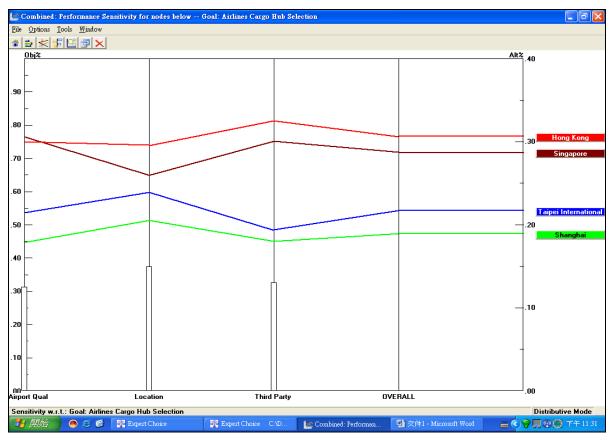


Figure 4 Ranking of four major hub airports in the Great China Region Source: this research

Service		Weighted P	erformance	
Qimensions	Airport Quality	Location	Third Party	Overall
	Dimension	Dimension	Influence	Performance
Airports			Dimension	
Singapore Changi	0.77	0.161	0.038	0.300
Hong Kong CLK	0.76	0.183	0.041	0.277
Taiwan Taipei	0.54	0.148	0.025	0.227
Shanghai Pudong	0.45	0.128	0.023	0.196

Table 5	The rankings	of the four	cargo hub	airports'	overall perform	ance
			0	r	P P P P P P P P P P P P P P P P P P P	

Source: this research.

7. CONCLUSION AND SUGGESTIONS

'Political risk' and 'congestion and delay' are two sides of a coin in the four alternative airports in this study. The trade volume between Mainland China and Taiwan has been increasing in leaps and bounds since 1988. Indirect air traffic links between Taiwan and

Mainland China through Hong Kong double the air traffic volume in the sky in this region. From the viewpoint of the carriers served these four air cargo hubs' in Chinese-Asian region, a healthy communication channel should be built between Taiwan and China's civil aviation authorities to make regular direct air traffic links across Taiwan Strait without any political limitation. Thus, not only can the 'congestion and delay' situation be released, the 'political risk' can also be significantly reduced through the friendly direct air links between Taiwan and China mainland. The awarding of the fifth fly freedom between Taiwan and China mainland can improve the load factor for carriers in Taiwan and China mainland. Thus, it is also a very important method to reduce the airports congestion across the Taiwan Strait. Airport users charge (AUC) is one of the most important criteria for carriers to select a cargo hub airport, carriers' sensitiveness intensity on AUC was found increased during the period between pilot study and main study. This suggests cargo hub airports should have a more flexible pricing policy to help carriers overcome their financial difficulties during their business recession period.

The focus of this research is simply focused on studying major service attributes of air cargo hubs in the four major hub airports in the Chinese-Asian region. Further research is suggested to include airports in the Europe and the America, so that a more comprehensive result on the importance of air cargo hubs' service attributes can be found. In addition to full cargo jet, the passenger jet's belly cargo is another major way to transport high value product with more frequent flights service. Service attributes' importance should be different between the all cargo air carriers, the passenger jet's belly cargo carriers, and the combined carriers. Looking into these differences between different types of air carriers may be another avenue for future researches.

ACKNOWLEDGEMENT

Authors are much obliged to the anonymous reviewers' constructive suggestions which greatly improve the quality of this paper. The research is financially supported by Grant NSC-94-2415-H-346-002-SSS from the Taiwan's National Science.

REFERENCES

AAPA (2005) AAPA Annual Report 2005, accessed http://www.aapairlines.org on 4/29/2006.

- Berechman J, de Wit J (1996) An analysis of the effects of European aviation deregulation on an airline's network structure and choice of a primary West European hub airport, Journal of Transport Economics and Policy, 30(3), 251-274.
- Button K (2002) Debunking some common myths about airport hubs, **Journal of Air Transport Management**, 8, 177-188.

- Cheng SC, Chen MY, Chang HY (In press, 2006) Semantic-based facial expression recognition using analytical hierarchy process, **Expert Systems with Applications**.
- Frits KP, Matthias H (2003) Exploring scale the advantage of thinking small: Commercial air travel and the failure of the hub approach, **MIT Sloan Management Review**, 44(2), 36-40.
- Fu FC (1995) A research on the co-operation and competition on the information and electronic manufacturing industry, accessed <u>http://www.moea.gov.tw/~ecobook/season/</u> <u>sa417.htm</u> on 30/04/2006.
- Gardiner J, Humphreys I and Ison S (2005) Freighter Operators' Choice of Airport: A Three-stage Process, **Transport Reviews**, 25(1), 85-102.
- IATA (2004) IATA CEO Brief, March 2005. Accessed http://www.iata.org on 4/29/2006.
- Marianov VA, Serra DB (2002) Location-allocation of multiple-server service centers with constrained queues or waiting times, **Annals of Operations Research**, 111, 35-50.
- Nero G and Black JA (1998) Hub-and-spoke networks in the inclusion of environmental costs on airport pricing, **Transportation Research Part D: Transport & Environment**, 3(5), 275-296.
- Oum TH, Ohashi H., and Kim T.S. (2002) An analysis of the freight hubs in Northeast Asia: Focus on air freight transshipment Route Choice Analysis, **The Proceedings of the Northeast Asian Economic Forum (NEAEF)**, the Korea Transport Institute, Dec., 2002.
- Ohashi H, Kim TS, Oum TH and Yu C (2005) Choice of air cargo transshipment airport: an application to air cargo traffic to/from Northeast Asia, **Journal of Air Transport Management**, 11(3), 149-159.
- Sasaki M, Suzuki A, and Drezner Z (1999) On the selection of hub airports for an airline hub-and-spoke system, **Computers & Operations Research**, 26(14), 1411-1422.
- Takase T and Morikawa T (2005) Airport Choice Analysis of International Passengers Using Time-Series Disaggregate Data, **Research in Transportation Economics**, 13, 197-210.
- Tretheway M and Kincaid I (2005) Competition between airports in the new Millennium: what works, what doesn't work and why, February 16-18, 2005, **8th Hamburg Aviation Conference**, German.
- Tsai MC and Su YS (2002) Political risk assessment on air logistics hub developments in Taiwan, **Journal of Air Transport Management,** 8(6), 373-380.

¹Details of these airlines are available at <u>http://www.cksairport.gov.tw</u>, accessed on 2006/4/28.

² Accessed <u>http://www.cksairport.gov.tw/CKSchi/schedule/airline_c.jsp#</u> on 2006/4/28.

³ According to Taiwan Taipei International (CKS) Airport's website, there are 19 foreign international air cargo carriers served Taipei International Airport, however the author has contacted Martin Air by telephone and found Martin Air had stopped serving Taiwan since 2004. Thus, questionnaires were only able to post to eighteen foreign carriers in the major AHP-round survey.

APPENDIX: AHP QUESTIONNAIRE STUDY OF AIRLINES' CARGO HUB AIRPORT SELECTION: A GLOBAL SURVEY]

Dear Director/President/Executive,

I am an assistant professor at Penghu University. I am writing to you to ask if you would kindly participate in a survey of airlines' cargo hub airport selection decision-making behaviour. This research project is supported by the National Science Foundation in Taiwan. The first part of the survey is focusing on the weight criteria have in cargo airport selection and how they influence your cargo hub airport choice. The second part of the survey is airport specific; it aims to find out overall performance of the four major cargo hub airports in the great China region, namely, Shanghai, Hong Kong, Singapore, and Taipei. Please complete the questionnaire from your viewpoint. This is an academic research and survey results will not be disclosed to any third party. Any geographical or other comparisons will not identify companies by name.

Since there are only a few large air carriers, your opinion is vitally important for my academic research. If you are not sure of the answer to a question, please provide your best-estimated response. If you wish to receive a summary of the survey findings, please return the completed tear-off slip below to me separately and I will be happy to send the summary to you when the research is over. Please send the slip in a separate envelope if you want to safeguard the anonymity of the questionnaire.

I would like to thank you in advance for your kind participation in this survey.

To: Dr. TC Lirn (PhD/Assistant Professor)

Penghu Management School, Penghu University,

No. 300, Liuho Road, Makung City, Penghu County, Taiwan

Postcode: 880

Tel: +886+6+926-4115, Mobile Phone: +886+963+017156, Fax: +886+6+926-0042 E-Mail: TEDLIRN@YAHOO.COM.TW , TEDLIRN@NPU.EDU.TW I • Questionnaire Structure: The research aims to look into three major critical service attributes influencing airlines' cargo hub airport selection, namely, airport quality, airport location, and third party influences. (1) Airport quality: Labour force quality, airport ground access, infrastructure, airport user charge, airside congestion and delay. (2) Airport location: Operational availability (e.g. typhoon, snow), local demand, geography of airports, competition from nearby airports. (3) Third party influence: Airport marketing, freight forwarders/shippers/consignees, government legislation, bilateral agreement, environmental restrictions, political risk.

II • Explanation and examples of terms and scales used:

If you think criterion A is 9 times more important than criterion B in airlines cargo hub airport decision making, then please circle as follows:

CRITERION						Int	ensit	y of F	Relati	ve Ir	npor	tance						CRITERION
Airport Quality (A)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Airport Location (B)

Circling ⁽⁹⁾ means: From global carriers' perspective, (A) factor (Airport Quality) has extreme importance for airlines cargo hub decision making when compared with (B) factor (Airport Location).

If you think the C criterion is 7 times more important than B criterion in airlines cargo hub airport decision making, then please circles as follows:

CRITERION		Intensity of Relative Importance												CRITERION				
Airport Location (B)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Third Party Influences (C)

Circling (9) means: From global carriers' perspective, (C) factor (Third Party Influences) has extreme importance for airlines cargo hub airport decision making when compared with (B) factor (Airport Location).

Scales of relative importance:

Intensity of Relative Importance	Definition
9	Extreme importance
8	Demonstrated to extreme importance
7	Demonstrated importance
6	Strong to demonstrated importance
5	Essential or strong importance
4	Moderate to strong importance
3	Moderate importance of one over another
2	Equal to moderate importance
1	Equal importance

III **`** The survey

Part one: The Criteria Comparison

1.	First Tier Comparison: the	relative importance of	each major criterion	for cargo hub airport	selection decision
			••••••••••••••••••••••••••••••••••••••		

CRITERION		Intensity of relative importance											CRITERION					
Airport quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Airport Location
Airport quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Third Party Influences
Airport Location	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Third Party Influences

2. Second Tier Comparison: Relative importance of each sub-criterion for cargo hub airport selection

(1) Airport Quality: Labour force quali	ty airport ground accord	introstructura airport usor aba	raa airsida aangastian and dalay
TTAIDOR Quality. Labour force quali	iv. andon ground access	. IIIII asti ucture, all port user cha	
		,	

			-		_							-						
SUBCRITERION		Intensity of relative importance										SUBCRITERION						
Labour force quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airport ground access
Labour force quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	infrastructure
Labour force quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airport user charge
Labour force quality	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airside congestion and delay
airport ground access	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	infrastructure
airport ground access	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airport user charge
airport ground access	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airside congestion and delay
infrastructure	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airport user charge
infrastructure	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airside congestion and delay
airport user charge	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	airside congestion and delay

				-	· •	• •			· ·					-	-			
SUBCRITERION	Intensity of relative importance												SUBCRITERION					
Operational availability	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	local demand
Operational availability	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	geography of airports
Operational availability	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8		competition from nearby airports
local demand	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	geography of airports
local demand	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8		competition from nearby airports
geography of airports	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8		competition from nearby airports

(2) Airport Location: Operational availability (e.g. typhoon, snow), local demand, geography of airports, competition from nearby airports.

(3) Third Party Influences: Airport marketing, freight forwarders/ shippers/consignees, government legislation, bilateral agreement, environmental restrictions, political risk.

SUBCRITERION		Intensity of relative importance													SUBCRITERION			
Airport marketing,	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Freight forwarders/ shippers/consignees
Airport marketing	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Government legislation
Airport marketing	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Bilateral agreement
Airport marketing	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Environmental restrictions
Airport marketing,	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Political risk
Freight forwarders/	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Government legislation
shippers/consignees																		
Freight forwarders/	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Bilateral agreement
shippers/consignees																		
Freight forwarders/	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Environmental restrictions
shippers/consignees																		
Freight forwarders/	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Political risk
shippers/consignees																		
Government legislation	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Bilateral agreement
Government legislation	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Environmental restrictions
Government legislation	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Political risk
Bilateral agreement	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Environmental restrictions
Bilateral agreement	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Political risk
Environmental restrictions	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Political risk

Part Two: Evaluating major hub cargo airports' performance in Chinese countries

airport has the highest possible performance with reference to the specific sub-criterion; Circling ① means the lowest possible performance)										
, Hub cargo airports	Taipei Chiang Kai	Hong Kong Chek	Shanghai Pudong	Singapore Changi						
Selection Sub-Criteria /	Shek Airport	Lap Kok Airport	Airport	Airport						
1. Labour force quality	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
2. Airport ground access	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
3. Infrastructure	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
4. Airport user charge	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
5. Airside congestion and delay	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
6. Operational availability (e.g. Typhoon, snow)	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
7. Local demand	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
8. Geography of airports	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
9. Competition from nearby airports	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
10. Airport marketing	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
11. Freight forwarders/ shippers/consignees	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
12. Government legislation	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
13. Bilateral agreement	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
14. Environmental restrictions	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						
15. Political risk	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5						

Please circle one of the five ratio scales 1, 2, 3, 4, 5 to evaluate the performance of the 15 sub-criteria for each airport. Circling (5) means an

Triangle fuzzy set utilized three values to represent a semantic wording. For example, a triangle fuzzy set A can be defined by μ . A. (x) =

triangle mf(x, [10,40,60]), where A is the fuzzy set of semantic wording - "Very Poor".

Circling 1 out of the five ratio scales, it indicates the airport has a very poor performance on the sub-criterion, and the triangle fuzzy (TF)set values are (

Circling 5, it indicates the airport has an excellent performance on the sub-criterion, and the TF set values are (

The authors of category (C) are requested to answer only 1. and $2..\downarrow$

Start from the new page

-

Answer Sheet

Paper ID: 100224

Paper title: STUDY OF AIRLINES' CARGO HUB AIRPORT SELECTION BEHAVIOUR – AN EMPIRICAL STUDY IN TAIWAN Contact author: Taihcherng LIRN

1. Preference to present at the "poster session" (All authors required to check)

c) I strongly prefer the oral presentation to the poster presentation.

2. "International Research Groups (IRGs) relating session"

3. Revision report. (for the papers "Accepted fully" (A) and "Accepted with conditions" (B).)

	Requested Location			Reviewer's					
No.	revision	Page	No. of line/	comment/request/question	Your resulting revision				
	level	no.	figure/table						
1	Total comments	p 1~ p12		Grammar and words should be improved so that the paper can be clearly understood.	This manuscript is prove-read and many sentences are rewritten.				
2	Required	рб, р7, р8	Figure 2, Figure 3, Table 2.	Figures should be examined again and applied unit form.	The title of Figure 2 and Figure 3 is centred. The title of Table 2 is moved to the top of the table.				
3.	Required	р7	1 st paragraph, Line 3-5.	In the part of importance analysis by AHP, goodness of fit test for AHP result is needed.	Table 4 is inserted in page 8 and Table 4 is discussed in page 7.				
4.	Required	p9	2 nd paragraph, Line 6	In the part of performance analysis, detailed data table will be more useful for readers.	Table 5 is inserted in page 9 to exhibit the detailed performance data of the four hub airports.				
5.	Required	p13	Appendix	As for questionnaire, original form and intensive description of survey result is needed.	Original questionnaire is inserted as an appendix from page 13 to page 18. New sentences are inserted as paragraph 1 in page 9 to intensively discussed the survey result				
6		p1			I have revised the title to be "Study of airlines' cargo hub airport selection behaviour – An empirical study in Taiwan".				