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Abstract

The purpose of this paper is to compare the accuracy of various linear and nonlinear models for forecasting aggregate
retail sales. Because of the strong seasonal fluctuations observed in the retail sales, several traditional seasonal
forecasting methods such as the time series approach and the regression approach with seasonal dummy variables and
trigonometric functions are employed. The nonlinear versions of these methods are implemented via neural networks
that are generalized nonlinear functional approximators. Issues of seasonal time series modeling such as
deseasonalization are also investigated. Using multiple cross-validation samples, we find that the nonlinear models
are able to outperform their linear counterparts in out-of-sample forecasting, and prior seasonal adjustment of the data
can significantly improve forecasting performance of the neural network model. The overall best model is the neural
network built on deseasonalized time series data. While seasonal dummy variables can be useful in developing effective
regression models for predicting retail sales, the performance of dummy regression models may not be robust.
Furthermore, trigonometric models are not useful in aggregate retail sales forecasting.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Forecasting of the future demand is central to
the planning and operation of retail business at
both macro and micro levels. At the organiza-
tional level, forecasts of sales are needed as the
essential inputs to many decision activities in
various functional areas such as marketing, sales,

*Corresponding author. Tel.: +1-404-651-4065; fax: +1-
404-651-3498.
E-mail address: gpzhang@gsu.edu (G.P. Zhang).

production/purchasing, as well as finance and
accounting (Mentzer and Bienstock, 1998). Sales
forecasts also provide basis for regional and
national distribution and replenishment plans.
The importance of accurate sales forecasts to
efficient inventory management at both disaggre-
gated and aggregate levels has long been recog-
nized. Barksdale and Hilliard (1975) examined the
relationship between retail stocks and sales at the
aggregate level and found that successful inventory
management depends to a large extent on the
accurate forecasting of retail sales. Thall (1992)
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and Agrawal and Schorling (1996) also pointed
out that accurate demand forecasting plays a
critical role in profitable retail operations and
poor forecasts would result in too-much or too-
little stocks that directly affect revenue and
competitive position of the retail business.

Retail sales often exhibit strong seasonal varia-
tions. Historically, modeling and forecasting sea-
sonal data is one of the major research efforts and
many theoretical and heuristic methods have been
developed in the last several decades. The available
traditional quantitative approaches include heur-
istic methods such as time series decomposition
and exponential smoothing as well as time series
regression and autoregressive and integrated mov-
ing average (ARIMA) models that have formal
statistical foundations. Among them, the seasonal
ARIMA model is the most advanced forecasting
model that has been successfully tested in many
practical applications. In addition, it has been
shown that the popular Winter’s additive and
multiplicative exponential smoothing models can
be implemented by the equivalent ARIMA models
(McKenzie, 1984; Bowerman and O’Connell,
1993).

One of the major limitations of the traditional
methods is that they are essentially linear methods.
In order to use them, users must specify the model
form without the necessary genuine knowledge
about the complex relationship in the data. Of
course, if the linear models can approximate the
underlying data generating process well, they
should be considered as the preferred models over
more complicated models as linear models
have the important practical advantage of easy
interpretation and implementation. However, if
the linear models fail to perform well in both
in-sample fitting and out-of-sample forecasting,
more complex nonlinear models should be con-
sidered.

One nonlinear model that recently receives
extensive attention in forecasting is the artificial
neural network model (NN). Inspired by the
architecture of the human brain as well as the
way it processes information, NNs are able to
learn from the data and experience, identify the
pattern or trend, and make generalization to the
future. The popularity of the neural network

model can be attributed to their unique capability
to simulate a wide variety of underlying nonlinear
behaviors. Indeed, research has provided theore-
tical underpinning of neural network’s universal
approximation ability. That is, with appropriate
architectures, NNs can approximate any type of
function with any desired accuracy (Hornik et al.,
1989). In addition, few assumptions about the
model form are needed in applying the NN
technique. Rather, the model is adaptively formed
with the real data. This flexible data-driven
modeling property has made NNs an attractive
tool for many forecasting tasks as data are often
abundant while the underlying data generating
process is hardly known or changing in the real
world environment.

Although numerous comparative studies be-
tween traditional models and neural networks
have been conducted in the literature, findings are
mixed with regard to whether the flexible non-
linear approach is better than the linear method in
forecasting (Adya and Collopy, 1998). In addition,
contradictory conclusions have been reported on
when or under what conditions one method is
better than the other (see Zhang et al., 1998).
Several researchers have provided empirical evi-
dence on the comparative advantage of one model
over the other in various forecasting situations.
For example, Elkateb et al. (1998) reported a
comparative study between ARIMA models and
neural networks in electric load forecasting. Their
results showed NNs were better in forecasting
performance than the linear ARIMA models.
Prybutok et al. (2000) compared NNs with
ARIMA and linear regression for maximum ozone
concentrations and found that NNs were superior
to the linear models. Although most of the
published research indicates the superiority of the
NN model in comparison to simpler linear models,
several studies report different results. Church and
Curram (1996) and Ntungo and Boyd (1998)
showed that neural networks performed about
the same as, but no better than, the econometric
and ARIMA models. Callen et al. (1996) reported
the negative findings about neural networks in
forecasting quarterly accounting earnings. They
showed that NNs were not as effective as the linear
time series models in forecasting performance even
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if the data were nonlinear. Kirby et al. (1997) and
Darbellay and Slama (2000) also reported similar
findings in forecasting motorway traffic and short-
term electricity demand.

While most of the above studies do not involve
seasonal data, little research has been done
focusing directly on seasonal time series modeling
and forecasting. How to effectively model seasonal
time series is a challenging task not only for the
newly developed nonlinear models, but also for the
traditional models. One popular traditional ap-
proach to dealing with seasonal data is to remove
the seasonal component first before other compo-
nents are estimated. Many practitioners in various
forecasting applications have satisfactorily
adopted this practice of secasonal adjustment.
However, several recent studies have raised doubt
about its appropriateness in handling seasonality.
Seasonal adjustment has been found to lead into
undesirable nonlinear properties, severely dis-
torted data, and inferior forecast performance
(Plosser, 1979; Ghysels et al., 1996; De Gooijer
and Franses, 1997). De Gooijer and Franses (1997)
pointed out that “although seasonally adjusted
data may sometimes be useful, it is typically
recommended to use seasonally unadjusted data.”
On the other hand, mixed findings have also been
reported in the limited neural network literature
on seasonal forecasting. For example, Sharda and
Patil (1992) found that, after examining 88
seasonal time series from the M-competition
(Makridakis et al., 1982), NNs were able to model
seasonality directly and pre-deseasonalization is
not necessary. Alon et al. (2001) also found that
NNs are able to “capture the dynamic nonlinear
trend and seasonal patterns, as well as the
interactions between them.” Based on a sample
of 68 time series from the same database, Nelson
et al. (1999), however, concluded just the opposite.
Zhang and Qi (2002) confirmed conclusions in
Nelson et al. (1999) with consumer retail sales.

The purpose of this paper is to compare the out-
of-sample forecasting performance of aggregate
retail sales between several widely used linear
seasonal forecasting models and the nonlinear
neural network models. Our focus will be on
univariate time series forecasting. Motivated by
the lack of general guidelines and clear evidence on

whether the powerful nonlinear modeling capabil-
ity of neural networks can improve forecasting
performance for seasonal data, we would like to
provide detailed analysis and empirical evidence
on the effectiveness of different modeling strategies
for seasonal time series forecasting. Although
Alon et al. (2001) have studied aggregate retail
sales forecasting issues with neural networks, their
study does not specifically consider a number of
modeling issues for seasonal time series. On the
other hand, to our knowledge, no research has
been conducted to investigate whether using
auxiliary variables such as seasonal dummy and
trigonometric variables is useful in improving
retail sales forecasting.

The rest of the paper is organized as follows.
The next section presents a review of the tradi-
tional methods as well as the nonlinear neural
networks for direct seasonal time series modeling.
The resecarch methodology of the study is de-
scribed in Section 3, which is followed by the
discussion of empirical findings. The last section
provides a summary of the results and concluding
remarks.

2. Modeling seasonal variations

This section examines several linear and non-
linear models that have been commonly used in
modeling and forecasting seasonal time series.
Although the most popular traditional approach
to handling seasonality is to remove the seasonal
variations from the data, it is important to note
that seasonal adjustment is an approximation
method and forecasts based on seasonally adjusted
data may have wider error margins than these
based on the original data because of the more
uncertainties involved in the seasonal adjustment
process. Of course, if the seasonality is removed,
seasonal models are not needed for the deseaso-
nalized data. For this reason, our focus here will
be on several direct seasonal modeling methods.
Specifically, we consider three classes of general
modeling approach to seasonal data: seasonal
ARIMA, regression, and feedforward neural net-
works.
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2.1. Box—Jenkins ARIMA modeling approach

ARIMA is the most versatile linear model for
forecasting seasonal time series. It has enjoyed
great success in both academic research and
industrial applications during the last three dec-
ades. The class of ARIMA models is broad. It can
represent many different types of stochastic
seasonal and nonseasonal time series such as pure
autoregressive (AR), pure moving average (MA),
and mixed AR and MA processes. The theory of
ARIMA models has been developed by many
researchers and its wide application was due to the
work by Box and Jenkins (1976) who developed a
systematic and practical model building method.
Through an iterative three-step model building
process: model identification, parameter estima-
tion and model diagnosis, the Box—Jenkins meth-
odology has been proved to be an effective
practical time series modeling approach.

The general seasonal ARIMA model has the
following form:

$,(B)Pp(B')(1 — B)(1 — B y, = 0,(B)Oo(B)es,

(1)
where
¢,(B)=1—¢B— B> — - — ¢, B,
&p(B) =1 — OB — &, B> — --- — Op,B",
0,B)=1—0,B— 0,8 — - —0,B,
Oo(B)=1— O,B° — OB* — --- — OBY.

s is the season length, B is the backward shift
operator, and ¢, is a sequence of white noises with
zero mean and constant variance. The model order
(p, d, q; P, D, Q) are determined during the model
identification stage by use of various sample
autocorrelation functions.

Although expression (1) is the most commonly
used multiplicative form of the seasonal ARIMA
model, other nonmultiplicative forms are also
possible (Pankratz, 1983). Whatever the form
used, all of the seasonal ARIMA models
can express the future value as a linear combina-
tion of the past seasonal and nonseasonal lagged
observations.

2.2. Regression approach to seasonal modeling

Multiple regression can be used to model
seasonal variations. It evolves from the traditional
decomposition method. The general additive
decomposition model has the following expres-
sion:

Yi=T,+ S +¢, 2

where T, is the trend component and S; is the
seasonal component at time ¢. ¢ is the error term
often assumed to be uncorrelated. This additive
model is appropriate if the seasonal variation is
relatively constant. If the seasonal variation
increases over time, then the multiplicative model
will be more appropriate. In this case, however,
the logarithmic transformation can be used to
equalize the seasonal variation and then the
additive model (2) will be again suitable.

Traditionally the trend component can be
modeled by polynomials of time ¢ of some low
orders. Here we consider the following linear trend
model:

T, = By + Byt (3)

On the other hand, the seasonal component can
be modeled by either seasonal dummy variables or
trigonometric functions. With the seasonal dummy
variable [I; defined as I; =1 if time period ¢
corresponds to season i and I; = 0 otherwise, we
have

S; = wily +wrlp + - + wgdy. 4)

When combining (3) and (4) into model (2), it is
necessary to either omit the intercept f3, or set one
of the seasonal parameter w to zero in order for
the parameters to be estimated.

The seasonal component S, can also be modeled
as a linear combination of trigonometric functions:

Si=> 4 sm<$t+ 4),.), (5)
i=1

where A; and ¢; are the amplitude and the phase
of the sine function. m is the number of sine
functions used to represent the seasonal variation.
In many cases, m = 1 or 2 is sufficient to represent
complex seasonal patterns (Bowerman and
O’Connell, 1993; Abraham and Ledolter, 1983).
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An equivalent form to (5), which is often used in
practice, is

S, = Z(wli sin (%l t) + wy; cos (Tm t)) (6)

It is important to note that unlike ARIMA
models, regression models are deterministic in that
model components or coefficients are constants
over time. Thus the behavior of the regression
method can be quite different from that of the
stochastic models. If the model components are
changing as in many economic and business time
series, the deterministic models may not be
appropriate.

2.3. Nonlinear modeling approach

A number of nonlinear time series models have
been developed in the literature but few are
specifically for seasonal modeling. Moreover, most
of these models are parametric and the effective-
ness of the modeling effort depends to a large
extent on whether assumptions of the model are
satisfied. To use them, users must have knowledge
on both data property and model capability and
the model form must be pre-specified. This is the
major obstacle for general application of these
models.

Neural networks are the most versatile non-
linear models that can represent both nonseasonal
and seasonal time series. The most important
capability of neural networks compared to other
nonlinear models is their flexibility in modeling
any type of nonlinear pattern without the prior
assumption of the underlying data generating
process. The most popular feedforward three-layer
network for forecasting problems has the follow-
ing specification:

q
Ve = oo+ Z%f
=

1

4
( Byxir + ﬁ()j) + &, (N
i=1

4

where p is the number of input nodes, ¢ is the
number of hidden nodes, f is a sigmoid transfer
function such as the logistic: f(x)=(1/1+
exp(—x)). {o;, j = 0,1, ...,n} is a vector of weights
from the hidden to output nodes and {f;,i=
0,1,....,p, j=1,2,...,q} are weights from the

input to hidden nodes. o9 and f; are weights of
arcs leading from the bias terms which have values
always equal to 1. The input variables, x;,i =
1,2, ...,p, are the lagged past observations if the
time series data are used in model building. In this
case, model (7) acts as a nonlinear AR model. To
model seasonality, seasonal lagged observations
(observations separated by multiples of seasonal
period s) should be used. However, selecting an
appropriate NN architecture or more importantly
lagged variables may require some experimental
efforts and traditional modeling skills (Faraway
and Chatfield, 1998). On the other hand, we can
use seasonal dummy variables or trigonometric
terms as predictor variables, in which case, the
neural network (7) is equivalent to a nonlinear
regression model. Williams (1997) found the
encouraging results with trigonometric variables
to model seasonal variations in an application of
rainfall prediction.

In the neural network literature, there are
different opinions with different empirical findings
on how to best model seasonal variations. The
fundamental difference is on whether neural net-
works are able to directly model seasonal patterns
and whether seasonal adjustment is necessary.
Gorr (1994) and many others believed that neural
networks should be able to capture the seasonality
in the data because of their universal approxima-
tion ability. Sharda and Patil (1992) found
empirically that neural networks can model
seasonality effectively and pre-deseasonalizing the
data is not necessary. Franses and Draisma (1997)
found that neural networks could also detect
possible changing seasonal patterns. Encouraging
results with direct seasonal modeling and forecast-
ing are also reported by Tang and Fishwick (1993),
Nam and Schaefer (1995), and Williams (1997).
On the contrary, Nelson et al. (1999) found that
data deseasonalization is critical to significantly
improve the forecasting performance of neural
networks.

3. Methodology

The data used in this study are monthly retail
sales compiled by the US Bureau of the Census.
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The total sampling period examined is from
January 1985 to December 1999. Although longer
data series are available, a pilot study shows that
larger samples are not necessarily helpful in overall
forecasting performance. In a comparative study
for business sales forecasting, Luxhoj et al. (1996)
used a sampling period of only 5 years. Fig. 1 plots
the data, which clearly shows the increasing
seasonal fluctuations over the sampling period.

Three major research questions are addressed in
this study:

® Are auxiliary variables such as seasonal dummy
variables or trigonometric variables helpful in
forecasting seasonal time series with both linear
and nonlinear models?

® Does the increased modeling power of the
nonlinear neural network model improve the
out-of-sample forecasting performance for
retail sales?

® What is the best way to model seasonal time
series with neural networks? Is seasonal adjust-
ment useful to improve forecasting accuracy?

The first question is motivated by a recent study
by Williams (1997) who found increasing accuracy
by employing trigonometric variables in his neural
network models in forecasting daily rainfalls. Since
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seasonal dummy variables are also commonly used
in linear seasonal models, we are interested in
knowing if using seasonal dummy variables can
improve modeling and forecasting performance
for retail sales. Furthermore, if auxiliary variables
were able to improve forecasting accuracy, then we
would like to know further if the improvement is
bigger with linear method or nonlinear method.

These issues are investigated through a com-
parative study of out-of-sample forecasting be-
tween linear and nonlinear models discussed in the
previous section. Three linear models—ARIMA
with time series, regression with dummy variables,
and regression with trigonometric variables—are
built using the in-sample data. The forecasting
performance of each model is then evaluated by
results from the out-of-sample which is excluded in
the in-sample fitting and model selection process.
Since the retail sales series exhibits both trend and
seasonality, the following regression model is
established:

Y, =Bo+ Pit+ oy +wilp+ - + o1l + 48)

where the seasonal dummy variable 7,; defined as
I,; = 1 if time period ¢ corresponds to month 7 and
I;; = 0 otherwise; f, |, w1, 2, ..., are model
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Fig. 1. Retail sales (1985-1999).
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parameters. Note that the dummy variable for
December is not explicitly defined.

We also consider the following regression
models with two-term and four-term trigonometric
functions, respectively:

. (2nt 2mt
Y, =fy+ bt + o sm(%) + w cos<1—2> +€9)

. (2mt 2t
Yt —BO + ﬁlt+ (0] Sll’l(ﬁ) + w? COS(H)

. (4nt 4nt
+ w3 sin (E) + w4 cos (E) + & (10)

Using models (8)—(10) requires that the time
series have constant seasonal variations. Since the
retail sales time series presents a clear increasing
seasonality, the natural log-transformation is
performed to stabilize the seasonal variations.
The models are then fitted to the transformed
data. Finally, the forecasts are scaled back to their
original units.

On the nonlinear model side, we use the
standard fully connected three-layer feedforward
networks. The logistic function is used for all
hidden nodes as the activation function. The linear
activation function is employed for the output
node. Bias terms are employed for both output
and hidden nodes.

For a time series forecasting problem, NN
model building is equivalent to determining both
the number of input nodes and the number of
hidden nodes. The input nodes are the past lagged
observations through which the underlying auto-
correlation structure of the data can be captured.
However, there is no theoretical guideline that can
help us pre-specify how many input nodes to use
and what they are. Identifying the proper auto-
correlation structure of a time series is not only a
difficult task for nonlinear modeling, but also a
challenge in the relatively simple world of linear
models. On the other hand, it is not easy to pre-
select an appropriate number of hidden nodes for
a given application. Although the NN universal
approximation theory indicates that a good
approximation may require a large number of
hidden nodes, only a small number of hidden
nodes are needed in many real applications (Zhang
et al., 1998). While hidden nodes are important to

capture the nonlinear structure in the data, they
are not as important as input nodes for nonlinear
time series forecasting (Zhang et al., 2001).
Following the common practice, we use the
cross-validation approach to select the best NN
architecture. That is, the in-sample data are
further split into a training set and a testing set.
The training set is used to estimate the model
parameter and the testing set is used to choose the
final NN model. In this study, the last 2 years data
in the in-sample are used as the testing set for
model selection. We consider 10 different levels of
input nodes: 1, 2, 3, 4, 12, 13, 14, 24, 25, and 36,
and 7 hidden node levels from 2 to 14 with an
increment size of 2. Thus, a total of 70 different
networks are experimented in the model building
process.

To see the effect of seasonal adjustment on the
forecasting performance of neural networks, we
use the most recent Census Bureau’s X12-ARIMA
seasonal adjustment program (Findley et al., 1996)
to deseasonalize the original series. NNs are
then fitted to the deseasonalized data and
finally forecasts based on the nonseasonal
data are transformed back to original scale using
the forecast seasonal indices provided by the
program.

We also investigate the issue of whether using
dummy or trigonometric variables can enhance
neural network’s capability of modeling seasonal
variations. Corresponding to dummy regression
model, a 12-input NN with the same predictor
variables used in (8) is constructed. The same idea
is used to build NN models with input variables
corresponding to those in trigonometric models (9)
and (10). Of course, in these settings, since the
input nodes are identified, the only thing left to be
decided in NN modeling is the number of hidden
nodes. The same experimental design for the
hidden nodes as in the time series modeling
described earlier is carried out to determine this
parameter.

To ensure that the observed differences of
performance between various models are not due
to chance, we used a five-fold moving validation
scheme with five out-of-sample periods from 1995
to 1999 in the study. Each out-of-sample (or
validation sample) contains 12 observations,
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representing 12 monthly retail sales in a year. The
length of the corresponding in-sample periods is
fixed at 10 years. That is, for each validation
sample, the previous 10 years of data are used as
in-sample for model development. This “moving”
validation approach with multiple overlapped in-
sample data and different out-of-samples can
provide useful information on the reliability of a
forecasting model with respect to changing under-
lying structures or parameters over time. In this
cross-validation analysis, all of the models are
rebuilt or re-estimated each time a new validation
sample is examined. Fig. 2 shows the five valida-
tion samples stacked over the 12-month forecast-
ing horizon.

To evaluate and compare the forecasting per-
formance of different models, we use three overall
error measures in this study. They are the root
mean squared error (RMSE), the mean
absolute error (MAE), and the mean absolute
percentage error (MAPE). Since there is no
universally agreed-upon performance measure
that can be applied to every forecasting
situation, multiple criteria are therefore often
needed to give a comprehensive assessment of
forecasting models.

4. Results

Neural network training is conducted with a
GRG2 based system (Hung and Denton, 1993,
Subramanian and Hung, 1993). GRG2 (Lasdon
and Waren, 1986) is a widely used optimization
routine that solves general nonlinear optimization
problems using the generalized reduced gradient
method. As shown in a number of previous studies
(Hung and Denton, 1993; Lenard et al., 1995), the
GRG2 training algorithm has many advantages
over the popular backpropagation based training
systems. On the other hand, we use Forecast Pro
to conduct the ARIMA model fitting and fore-
casting. In particular, we use the automatic model
identification feature of Forecast Pro to choose the
best model. The methodology is based on the
augmented Dickey—Fuller test and the Bayesian
Information Criterion (BIC). The capability of this
package is documented in Goodrich (2000).

We first give a detailed analysis of various
models on their performance for the 1999 retail
sales forecasting. The in-sample period for model
fitting and selection is from 1989 to 1998 while the
out-of-sample consists 12 periods in 1999. As
mentioned before, for NN time series modeling,
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Fig. 2. Five out-of-samples.
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the last 2 years in-sample data are used as the
validation and testing sample and the rest of
observations are used for model estimation. The
model with the best performance in the testing
sample will be selected as the final model for
further validation in the out-of-sample. All model
comparisons are based on the results for the out-
of-sample.

The ARIMA model identified by the Forecast
Pro is ARIMA(0,1,1)(0,1,1);, with the following
mathematical relationship:

(1 - B)(1 - B2y,
= (1 —0.7613B)(1 — 0.5429B")z,.

Fig. 3 shows the out-of-sample forecasts of this
model. We find that overall, the ARIMA model
follows the seasonal pattern exhibited in the sales
data. However it does not provide good forecasts
for the retail sales in 1999 because most of the
forecasted values are below the actual, a clear
under-forecasting situation. To see if neural net-
works are able to perform better, we plot the NN
forecasts for the 1999 sales in Fig. 4. In addition to
the direct modeling approach with the original

time series observations, we also build neural
networks with the transformed deseasonalized
data. From Fig. 4, we find that the direct NN
model performs even worse than the ARIMA
model as almost all forecasts are relatively far
below the actual values. On the other hand, it
seems clear that the neural network model built
with the deseasonalized data can improve the
forecast accuracy dramatically although forecasts
are still generally lower than the actual.

The under-forecast property of the above time
series models leads us to examine the data more
closely. Fig. 2 shows that the increases in almost
all 1999 monthly sales from the previous year are
significantly higher than those in all the previous 4
years. For example, retail sales in March for the
years 1995-1998 are fairly close while the number
for 1999 is much higher than that in 1998. This
could be the major reason that causes the models
built from the historical data before 1999 under-
forecast the values in 1999.

Figs. 5 and 6 present the forecast comparisons
between linear and nonlinear regression models
with seasonal dummy variables and trigonometric
functions, respectively. None of these models
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Fig. 3. ARIMA forecasts for 1999 sales.
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provides

better than their linear counterparts. The dummy pattern  fairly well, trigonometric
regression models consistently underforecast fail to capture the seasonal pattern in the out-of-
while forecasts from trigonometric models sample.
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satisfactory forecasts although the are not stable. In addition,
nonlinear regression models perform generally

12

while
regression models follow the general seasonal
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Fig. 6. Trigonometric forecasts for 1999 sales.

Out-of-sample (1999) forecasting error measures of various

measures. Moreover, compared to time series
models, both linear and nonlinear regression

models models with dummy or trigonometric variables

Model RMSE MAE MAPE yield much worse forecasts for the 12 months in
) 1999.

Linear . .
ARIMA 679448  5866.51 2.30 Because of the possible change in the data
Dummy regression 13978.04 13521.21 5.36 structure or parameter of the model over time, we
2-term trigonometric 24233.05 1742335  6.67 use a five-fold moving validation scheme described
4-term trigonometric 2207395 15166.68  5.76 in the last section. From Fig. 2 and the discussion

Nonlinear above, it seems quite possible that a one-size-fit-all
NN-direct 6825.46 587821 2.29 .m(.)d.el may not perform well over time. Therefqre,
NN-deseason 452526  4147.26  1.69 it is important to demonstrate that the conclusion
NN-dummy variables 9013.17  8664.97 3.44 made from one particular sample can extend to
NN-2-term trigonometric 22 805.58  12879.66  4.88 others and is not due to chance alone. In this
NN-4-term trigonometric  16685.41  11725.57 4.44

The summary statistics for the out-of-sample
forecasting performance of all linear and nonlinear
models are given in Table 1. All error measures
confirm the impression we obtained with the time
series plots presented earlier. Linear models as well
as most of the nonlinear models do not perform
well judged by all three criteria, though nonlinear
models in general outperform linear models. The
best model is the neural network built on
deseasonalized data. This model has the most
accurate forecast because of the lowest error

validation analysis, all of the models are rebuilt
and parameters re-estimated each time a new
validation sample is examined. It is important to
note that the model does change each time a
different in-sample is used to build ARIMA and
NN models with regard to model structures and/or
the parameters. For example, the ARIMA models
used for validation samples of 1995 and 1996
are ARIMA(0,1,1)(0,1,1);,, the same as that
for 1999, but all with different parameters, and
the models for both 1997 and 1998 are
ARIMA(0,1,1)(0,1,3)15, and again with different
parameters.
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Table 2

Forecasting comparison of time series models with five validation samples

Year RMSE MAE MAPE

ARIMA  NN-direct NN-deseason ARIMA NN-direct NN-deseason ARIMA NN-direct NN-deseason

1995 3708.23  3332.21 3242.05 3137.78  2786.50 2950.87 1.70 1.46 1.52

1996 4189.38 5281.78 4703.98 3239.66 4342.37 3631.94 1.61 2.16 1.80

1997 4499.30  4052.38 3919.85 3805.40  3246.29 3240.43 1.83 1.56 1.55

1998 5325.35 4458.28 3890.54 4111.72 3888.95 3194.99 1.77 1.75 1.45

1999 6794.48  6825.46 4525.26 5866.51 5878.21 4147.26 2.30 2.29 1.69

Mean 4903.35  4790.02 4056.33 4032.21 4028.47 3433.10 1.84 1.84 1.60

Std. dev.  1209.93 1338.30 580.63 1101.20 1193.09 467.95 0.27 0.37 0.14

Table 2 presents the overall results comparing Table 3

ARIMA and NN time series models across the Mean difference between time series models

5-year validation periods. Judged by all three.ove.rall Comparison Mean difference

accuracy measures and across five validation RMSE MAE VIADE

samples, neural networks with deseasonalized data

(NN-deseason) perform the best overall, while ARIMA vs. NN-direct 113.33 3.75 0.00

ARIMA and neural networks modeled with ARIMA vs. NN-deseason 847.01*  599.11"  0.24°
NN-direct vs. NN-deseason 733.69% 595.37% 0.24*

original data (NN-direct) perform about the same.
The overall superiority of the deseasonalized NN
model is further confirmed by the summary
statistics such as the mean and the standard
deviation in Table 2 and the results from Wilcoxon
rank-sum test presented in Table 3. The mean
difference measures between NN-deseason and
ARIMA and between NN-deseason and NN-
direct are all significant at the 0.05 level while
there is no significant difference between ARIMA
and NN-direct. Note that the use of seasonal
adjustment significantly reduces the variability of
the neural network models in prediction as
indicated by the standard deviations of the
performance measures.

We notice that the forecasting performance of
the NN-deseason model is not as good as that of
the ARIMA model in 1996 across all three
accuracy measures although it outperforms the
ARIMA in other four validation samples. This
observation suggests that though an overall best
model can provide most accurate predictions over
several forecasting horizons, judging by a specific
portion of the forecasting horizon, it is possible
that another model performs better. It further
suggests that no forecasting model is always the
best for all situations. Therefore, the importance

#Significant at the 0.05 level with Wilcoxon rank-sum test.

of using multiple cross-validation samples to
compare different forecasters becomes clearer.
Results of linear and nonlinear regression
models are reported in Tables 4 and 5. Table 4
shows the results from regression models with
seasonal dummy variables. Several observations
can be made from this table. First, except for the
1999 case in which both linear and nonlinear
regressions fail to predict well, the dummy
variables are very helpful in improving forecasting
performance. In fact, compared to the results in
Table 2, dummy regression models forecast much
better than all three linear and nonlinear time
series models in the validation samples from 1995
to 1998. However, dummy regression models
performed very poorly in forecasting 1999 sales
with all three error measures more than doubling
the size of those for time series models. Therefore,
seasonal dummy variables may be useful for retail
sales forecasting but the model may not be as
robust as NNs built on deseasonalized data.
Second, with a flexible nonlinear model, the
forecasting errors can be considerably reduced.
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Table 4
Forecasting comparison of dummy regression models
Year RMSE MAE MAPE
Linear Nonlinear Linear Nonlinear Linear Nonlinear
1995 2452.43 2436.88 2010.12 1910.53 1.01 0.98
1996 4442 .36 4442.70 3589.12 3589.36 1.76 1.76
1997 3367.96 3164.81 2965.38 2452.68 1.41 1.15
1998 3091.90 2834.43 2843.26 2453.65 1.26 1.10
1999 13978.04 9013.17 13521.21 8664.97 5.36 3.44
Mean 5466.54 4378.40 4985.82 3814.24 2.16 1.68
Std. dev. 4812.03 2697.75 4804.46 2779.81 1.81 1.03
Mean difference® 1088.14° 1171.58° 0.47°
#Mean difference = linear measure-nonlinear measure.
®Significant at the 0.05 level with Wilcoxon rank-sum test.
Table 5
Forecasting comparison of trigonometric regression models with five validation samples
Year RMSE MAE MAPE
Linear Nonlinear Linear Nonlinear Linear Nonlinear
2-term 4-term 2-term 4-term 2-term 4-term 2-term 4-term 2-term 4-term 2-term 4-term
1995 15216.88 12784.23 14394.33  9967.58 10854.78  9772.07 10590.19 8734.33 5.57 4.96 5.59 4.56
1996 14780.34 12527.97 15255.59 10663.07 10192.38  9492.53 10146.75 8574.49 491 4.53 4.67 4.13
1997 15091.80 13392.87 14629.80 10451.71 10423.38 10379.62 10256.77 9248.37 4.79 4.74 4.55 4.33
1998 17788.15 14313.38 17930.98 14036.61 11899.74 10021.56 10712.49 9551.54 5.21 4.35 4.68 4.02
1999 24233.05 22073.95 22805.58 16685.41 17423.35 15166.68 12879.66 11725.57 6.67 5.76 4.88 4.44
Mean 17422.04 15018.48 17003.26 12360.88 12158.73 10966.49 10917.17 9566.86 5.43 4.87 4.87 4.29
Std. dev.  3993.59  4003.56  3536.30  2905.38  3015.03  2370.55 1121.37 1268.82 0.75 0.55 0.42 0.22

Not only do the nonlinear neural networks
outperform their linear regression counterparts in
almost all validation samples, but their results are
also more stable as reflected by the standard
deviation measure. The mean differences in three
error measures between linear and nonlinear
models are all positive and significant at the 0.05
level with Wilcoxon rank-sum test, suggesting the
advantage of nonlinear model over its linear
counterpart.

All performance measures reported in Table 5
are significantly worse than those obtained with
the time series and dummy regression models.
Thus using trigonometric functions to predict

retail sales is not helpful at all. Although it is
almost always the case that a nonlinear NN model
performs better than its linear counterpart and a
four-term trigonometric regression model is better
than a two-term one, none of the trigonometric
regression models examined is able to provide
adequate forecasts for retail sales in all of the
validation samples.

5. Conclusions

This paper presents a comparative study
between linear models and nonlinear neural



230 C.-W. Chu, G.P. Zhang | Int. J. Production Economics 86 (2003) 217-231

networks in aggregate retail sales forecasting.
Accurate forecasts of future retail sales can help
improve effective operations in retail business and
retail supply chains. Since retail sales data present
strong seasonal variations, we investigate the
effects of different seasonal modeling strategies
and techniques on their forecasting accuracy. Both
time series approach and regression approach with
seasonal dummy and trigonometric variables are
examined in the study. Our results suggest that the
nonlinear method is the preferred approach to
modeling retail sales movement. The overall best
model for retail sales forecasting is the neural
network model with deseasonalized time series data.

Our study confirms the earlier work by Nelson
et al. (1999) that prior seasonal adjustment of the
data can significantly improve forecasting perfor-
mance of the neural networks. While seasonal
dummy variables can be very useful and promising
in developing effective regression models for
predicting retail sales, the performance of dummy
regression models may not be robust and consis-
tent. On the other hand, trigonometric models are
not helpful in aggregate retail sales forecasting.
This finding is contradictory to that in Williams
(1997), which reports encouraging results by
employing trigonometric variables in predicting
daily rainfall. Examining the data plotted in Fig. 1
suggests that the retail sales series does not have
a clear sinusoidal shape as in rainfall data.
Therefore, this result may not be unexpected as
trigonometric models are best for modeling
sinusoidal behaviors.

In the forecasting literature, it is an established
fact that no single forecasting model is the best for
all situations under all circumstances (Makridakis
et al., 1982). Therefore, the “best” model in most
real world forecasting situations should be the one
that is robust and accurate for a long time horizon
and thus users can have confidence to use the
model repeatedly. To test the robustness of a
model, it is critical to employ multiple out-of-
samples to ensure that the results obtained for one
particular sample are not due to chance or
sampling variations. The usefulness of this strategy
in comparing and evaluating forecasting perfor-
mance of various models is clearly demonstrated in
our experiments.
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