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Abstract

Inventory management involves determination of shortage policy. It speci"es the conditions for losing or
backordering a demand. Alternative policies include pure backorder, pure lost sales, and partial backorder
(using a single backorder control limit). When the backorder-cost is time dependent it makes sense to modify
the backorder-limit over time. Thus, a new form of partial backorder policy (PB2) with two-segment
backorder control limits is introduced. The traditional policies mentioned above, are special cases of PB2.
Hence, we provide a uni"ed framework for studying di!erent policies that deal with shortage. The PB2
problem is formulated and solved as a discrete time, stochastic constrained control problem. Its performance
is numerically compared with the simpler alternative policies. In some cases its cost savings, versus the best of
PB and PL, exceeds 15%, and 7% versus a single backorder limit policy. The economical advantage is
signi"cant over a wide range of the problem parameters. � 2001 Elsevier Science Ltd. All rights reserved.

Scope and purpose

This paper develops an expanded framework for modeling shortages in inventory management. It
recognizes that optimal backordering strategy may change over time during an `out-of-stocka period. The
paper is motivated by experience in the chemical industry in which, the cost of backordering is highly time
related. Inventory managers, in this industry, consider to lose sales initially (once they run out of stock) and
begin to backorder demand later as they approach the replenishment time. A two-segment partial backorder
(r,Q) model is introduced and solved. Pure backorder (PB), pure lost sales (PL), and partial backorder (using
a single backorder limit), are all special cases of the proposedmodel. The problem is formulated and solved as
a discrete time, stochastic constrained control problem. Its performance is numerically compared with the
simpler alternative policies. In some cases its cost savings, versus the best of PB and PL, exceeds 15%, and
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7% versus a single backorder limit policy. The economical advantage is signi"cant over a wide range of the
problem parameters. The partial backorder policy we propose is not only di!erent from those in the
literature, but it provides new control #exibility.

Keywords: Inventory; Continuous review; Partial backorder; Lost sales; Backorder; Stochastic demand

1. Introduction

When a "rm is a sole supplier, or when there is a lack of substitutions or competitors, customers
may prefer to backorder un"lled demands. Lost sales occur when the customers prefer not to wait
for the next replenishment, or when the "rm decides to buy similar items from competitors to
satisfy demands and maintain customer loyalty. However, as pointed out by Peterson and Silver
[1, p. 253], in most practical situations, one "nds a combination of these two extreme policies
where some of the excess demands are backordered and the rest are lost.
Additional motivation for this study stems from consulting experience with inventory control

systems in the chemical industry. There, the partial backorder (PB) policy is implemented in the
following manner: out-of-stock items are "rst backordered (because there is no a priori knowledge
of how many items will be short during the lead time). When the quantity of the backordered items
reaches a certain limit, similar items are purchased from competitors to satisfy demands. We found
that some companies would rather do this than lose market share. A model for this type of partial
backorder policy is implemented using an explicit control limit b, which is the maximum allowable
number of backorders during the lead time. Real-time control implementation of this policy is easy;
only the backordered quantities are to be tracked. This partial backorder policy is called PB1
policy and was analyzed by Rabinowitz et al. [2].
In this paper, a more general policy called PB2 is introduced. It extends PB1 by allowing

two time segments during the lead time, to enable two backorder control limits b
�
and b

�
. It

provides another instrumental control to further reduce cost without adding complexity to
the real-time implementation. Formal descriptions of PB1 and PB2 policies are given in
Section 2. There, we will demonstrate that pure backorder, pure lost sales and PB1 policies
are special cases of PB2. Any policy which backorders during the "rst segment of the lead time
and lose sales during the second, or inversely, is also a special case of PB2. Therefore,
the PB2 policy provides a uni"ed framework for studying di!erent policies, which deal
with shortage. The cost function of PB2 is given in Section 3 and the solution procedure is
provided in Section 4. A numerical investigation in Section 5 explores the sensitivity of the
solution to the unit shortage costs (backorder and lost sales). We demonstrate that the PB2
policy is better than the other three policies for a certain range of cost parameters. In some
conditions, cost savings of more than 10% are realized. Potential future research is discussed in the
last section.
The literature, on partial backorder inventory control is sparse. An identical policy to the one we

propose was not found. Montgomery et al. [3] consider a continuous review inventory system
where a fraction �, of the un"lled demand is backordered and the remainder is lost. Almost all
articles in the literature model partial backorder in a similar way, namely, not as a decision
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variable. Cases of both deterministic and stochastic demands are considered, but the stochastic
demand case is treated heuristically. Rosenberg [4] reformulates the model of Montgomery et al.
[3] by introducing a `"ctitious demand ratea which simpli"es the analysis of a partial backorder
policy and gives an economic interpretation to the circumstances under which this policy is
optimal.
As in our case, Kim and Park [5] consider a continuous review system with a constant

lead time where the backorder cost is assumed to be proportional to the length of time for
which the backorder exists. However, their backorder control variable is di!erent, it is a fraction
of the un"lled demand. Assuming at most one outstanding order at any point in time, they
derive the equations from which r (the reorder point) and Q (the order size) can be computed
iteratively.
The literature proposes a variety of ways to deal with backordering. Under Poisson demand and

exponential lead-time, Woo and Sphicas [6] formulate a partial backorder model, which allows for
a "nite number of orders to be outstanding. Steady-state probabilities for the inventory level are
"rst derived and then, optimal values of r and Q are found using a search method. In our case, we
assume a single outstanding order and provide a closed-form solution for Q, for any combination
of the remaining decision variables, which are solved by search.
Posner [7] treats the case where backordered customers are willing to wait for a random

duration. In this model the partial backorder can be considered as a performance measure but is
not a decision variable. Das [8] employs an (S!1, S) policy and assumes Poisson demand with
a constant time limit on the backordered demand. Moinzadeh [9] extends it to allow partial
backorders. Smeitink [10] proves Moinzadeh's results, that the steady-state net inventory prob-
abilities depend on the mean of the lead time and not on the shape of its distribution.
Porteus [11] reviews periodic review models including one where a fraction of the excess

demands is backordered. A myopic approximation to this model is provided by Nahmias
[12]. For recent "ndings regarding the computations of optimal solutions to general
(s,S) inventory systems with backorder policy (both periodic review and continuous
review systems), see Zheng and Federgruen [13,14]. For continuous review backorder
systems, see Federgruen and Zheng [15] and for the discussions of the sensitivity of the optimal
solutions, see Zheng [16]. The partial backorder policy we propose is not only di!erent from
those in the literature, but it provides new control #exibility with signi"cant economical
advantage.

2. Partial backorder policies

For the convenience of the reader, before de"ning the PB2 policy, we will "rst de"ne a simpler
partial backorder policy called PB1, which was analyzed in Rabinowitz et al. [2]. Later on we show
that PB1 is a special case of PB2. The demand process is assumed to be Poisson with rate �. We will
use the following standard notations of the continuous review system: r is the reorder point;Q is the
order quantity; � is the "xed lead time; I(t) is the inventory level at time t, where the inventory level
is de"ned as the stock on-hand minus the number of backorders. When I(t)(0, we have a
shortage, with !I(t) the amount backordered. The cycle time ¹, is de"ned as the time between
reorders.
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Fig. 1. (a) The inventory over time under PB1 policy. (b) The inventory over time under PB2 policy.

2.1. PB1 policy

Let b (a nonnegative integer) denote the backorder limit. For 0(t(�, if !b#1)I(t))0,
a demand that arrives at time t is backordered, and if I(t)"!b, that demand is considered lost. In
other words, if D(�) is the demand during the lead time, the "rst r units demanded are satis"ed from
stock, the next b units demanded are backordered, and the remaining are lost, thus, b is also the
maximum number of units backordered. If b"0, we have the pure lost sales policy, and if b is
su$ciently large so that no lost sales are possible, we have the pure backorder policy. Fig. 1a, which
is a realization of inventory level against time, illustrates the PB1 policy.

2.2. PB2 policy

Under PB1, a single-decision variable (b) determines the backorder policy. Under PB2 we de"ne
three decision variables for this purpose as follows. First, t

�
(denoted the intermediate review time)

a selected time interval, starting at reorder and ending no later than the replenishment: 0)t
�
)�.

Second, b
�
and b

�
(nonnegative integers) the backorder limits, with b

�
)b

�
. The lead-time is

divided by t
�
into two time segments. The maximum number of units backordered is b

�
within the

"rst time segment and b
�
within the second one. An arriving demand at time t during the "rst time

segment, is backordered if !b
�
#1)I(t))0, but is lost if I(t)"!b

�
. During the second time

segment, an arriving demand is backordered if !b
�
#1)I(t))0, and is lost if I(t)"!b

�
.

Fig. 1b illustrates the PB2 policy.
If b

�
"b

�
, then PB2 reduces to PB1. If b

�
"b

�
"0, it reduces to the pure lost sales policy and if

b
�
is su$ciently large, it becomes the pure backorder policy. If b

�
"0 and b

�
'0 the PB2 policy

denies backorder in the "rst time segment but permits a partial backorder during the second
segment. When backorder cost includes a time-dependent factor, such a policy makes sense, but is
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not enabled under any previous model, including PB1. Apparently, the Two-segment PB2 policy
can be extended to include any "nite number of time segments of backorder limits within the lead
time.
The backorder limits, b

�
and b

�
, the "rst time-segment duration t

�
, the reorder point r and the

order quantityQ, are the model decision variables. We would like to identify the conditions, if exist,
for which an optimal PB2 policy is di!erent than that of PB1, pure backorder, and pure lost sales
policies. If such a situation exists, we need to examine its economical advantage versus the other
three policies.
The cost function will be derived in the next section and the formulas are obtained by employing

results from regenerative processes (see, for example, Cinlar [17]) and by following Hadley and
Whitin's derivation [18, pp. 197}200] of the lost sales case. In Section 4, we show that when r, t

�
,

b
�
and b

�
are "xed, the optimal order quantity QH can be found analytically. The variable t

�
is

continuous, but the "rst partial derivative of the expected cost function with respect to t
�
is too

complex, thus we employ a crude discrete approximation to solve for t
�
. The discrete approxima-

tion of t
�
is justi"ed because its resolution can be freely chosen, to obtain any desired accuracy. In

addition, an inventory control switching time, in practice, is not continuous, but is selected from
a discrete time scale (e.g. days). Consequently, a four-dimensional discrete search is used to identify
the optimal r, b

�
, b

�
and t

�
.

3. The cost function

For ease of exposition, we use a year to denote the time unit. Following Hadley andWhitin [18],
we incorporated three unit shortage costs:

�"per unit cost of lost demands,
�("per unit cost of backorders,
��"per unit-year cost of backordered demands,

and the ordinary unit costs:

h"unit holding cost,
K""xed ordering cost,
c"variable unit purchasing cost.

We further assume that the demand follows a stationary Poisson process with a rate of �,
a demand that arrives at time t is satis"ed immediately as long as the inventory level I(t)'0, and
an order of size Q is placed when I(t)"r and is received � years later (a deterministic lead-time). In
addition, we bound the inventory control policy such that at most one order is outstanding, as in
Hadley andWhitin [18, Sections 4}11]. Clearly, such a boundmight reduce the model applicability
especially when the lead time is long and the inventory holding cost is high. It is, however,
a common bound both in theory and in practice. Under this bound, �I(t): t*0� forms a regen-
erative process with renewals at the reorder times. This is the main motivation for this limitation,
relaxing this bound would complicate the model signi"cantly.
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Fig. 2. The random state variables under PB2 policy.

Let ¹ be the random cycle time, between two successive reorders. From renewal theory, the
expected annual cost is given by

CM (r, b
�
, b

�
, t

�
,Q)"

E[C]
E[¹]

, (1)

where C is the random total cost within a cycle. Here,

E[C]"K#cQ#hE[I
�
]#�E[¸]#�( E[B]#��E[B

�
], (2)

where I
�
is the accumulated (unit-year) inventory time within a cycle, ¸ is the number (units) of lost

sales per cycle, B is the number (units) of backorders in a cycle, and B
�

is the accumulated
(unit-year) backorder time during a cycle. Fig. 2 illustrates these random state variables. The
expected values E[I

�
], E[¸], E[B], E[B

�
], and E[¹] will be derived later.

In the following, we adopt the notations and identities used by Hadley andWhitin [18, Appendix
3]. Thus, we denote the Poisson probability as p(j; �t)"(�t)�e���/j! and its tail probability as
P(j; �t)"��

���
p(i; �t), for j"0, 1,2 .

3.1. Inventory level at �

Note that the state space of the inventory level just before replenishment arrives, I(�), is
�!b

�
,!b

�
#1,2,!b

�
,2, 0,2, r!1, r�. Its kth moment is derived in the appendix by Eq.

(A.1), based on the following decomposition:

E[I(�)�]"E
��
[E(I(�)��D

�
)], (3)

where D
�
is the demand during (0, t

�
] the "rst time segment of the replenishment period.

3.2. Expected backorder per cycle

The expected number of backorders B in a cycle, is derived by Eqs. (A.2) and (A.3) in the
appendix, based on the following decomposition:

E[B]"E[B
�
]#E

��
[E(B

�
�D

�
)], (4)

where B
�
is the random number of backorders during (0, t

�
], and B

�
during (t

�
,�].
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3.3. Expected backorder time per cycle

The expected value of the accumulated (unit-year) backorder time during a cycle, E[B
�
], is given

by

E[B
�
]"�

��

�
E[B

�
(t)] dt#�

�

��
E[B

�
(t)] dt, (5)

where B
�
(t) is the number of backorders at time t3(0, t

�
], and B

�
(t) is at t3(t

�
,�]. The derivation is

provided in the appendix by Eqs. (A.4)}(A.6).

3.4. Expected inventory per cycle

The expected accumulated (unit-year) inventory time held per cycle E[I
�
] consists of two parts:

before the replenishment, denoted by E[I
�
], and after the replenishment, denoted by E[I

�
].

Denoting D(t) for 0)t)� as the demand during (0, t]:

E[I
�
]"�

�

�
E[max�0, I(t)�] dt"�

�

�
E[max�0, r!D(t)�] dt

"�
�

��
	��
�


��

(r!x)p(x; �t)�dt"r
	��
�


��

g(x, �, �)!
	��
�

��

xg(x, �, �), (6)

where g() is de"ned by Eq. (A.5) in the appendix.
The expected accumulated (unit-year) inventory time after the replenishment is derived by Eqs.

(A.7)}(A.8) in the appendix, and is given by

E[I
�
]"

1
2�

�E[I(�)�]#2QE[I(�)]#Q�!r(r#1), (7)

where E[I(�)�] and E[I(�)] are the "rst and second moments of I(�) which are given by Eq. (A.1) in
the appendix.
Summing up E[I

�
] and E[I

�
] we obtain

E[I
�
]"r

	��
�


��

g(x, �, �)!
	��
�

��

xg(x, �, �)

#

1
2��E[I(�)�]#2QE[I(�)]#Q�!r(r#1)�. (8)

3.5. The expected cycle time

The cycle time can be divided into two parts: the time from reorder to replenishment, which is the
lead time � and the time from replenishment to the next reorder time, denoted by ¹

�
. By de"nition,

the expected cycle length E[¹]"�#E[¹
�
]. To "nd E[¹

�
], we de"ne Z"I(�)#Q as the

inventory level just after replenishment. The state space of Z is �!b
�
#Q,2, r#Q�. Thus,

N"Z!r represents the demand during ¹
�
. This means that ¹

�
equals the arrival time of N

units of demand: ¹
�

"��
���

¹
�
where ¹

�
's are iid exponentially distributed with parameter �
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representing the demand rate. Since N is a stopping time for the renewal process �¹
�
,¹

�
,2� and

E[N](R, from Wald's equation (see Ross [19, p. 59]), we obtain:

E[¹
�
]"E� �

�
���

¹
��"E[N]E[¹

�
]"

1
�
E[N].

Since N"Z!r"I(�)#Q!r, with a state space: �!b
�
#Q!r,2,Q�, we obtain

E[N]"Q!r#E[I(�)],

where E[I(�)] is given by Eq. (A.1) in the appendix. Therefore,

E[¹]"�#E[¹
�
]"�#

1
��Q!r#E[I(�)]�. (9)

By setting b
�
"b

�
"b, one may con"rm that E[¹] reduces to its structure under PB1 in

Rabinowitz et al. [2].

3.6. Expected lost sales per cycle

Clearly, in the long run, if all demands during a cycle are to be supplied (no lost demand), then
the expected cycle length would be Q/�. Thus, including the possibility of lost demands,

E[¹]"
Q
�

#E[¹
�
], (10)

where ¹
�
is the portion of the cycle with lost demands. Using (9), we get

E[¹
�
]"E[¹]!

Q
�

"�#

1
��E[I(�)]!r�. (11)

Because the demand rate is �, the expected lost sales per cycle is given by

E[¸]"�E(¹
�
)"��#E[I(�)]!r. (12)

4. Solution procedure

The optimal control parameters, r, b
�
, b

�
, t

�
and Q, are found by solving (P1):

(P1) minimize
	�� �� ��� ��

CM (r, b
�
, b

�
, t

�
,Q),

subject to r*0, b
�
*b

�
*0, 0)t

�
)�, Q*r#b

�
#1,

r, b
�
, b

�
and Q integers,

where CM ( ) ) is given by (1). Following Section 3, the objective function CM ( ) ) is a cubic equation in Q.
Thus, QH, the solution of (P1) for given values of r, b

�
, b

�
and t

�
, can be found analytically. We "rst

assume that Q is a continuous variable and derive the unbounded minimization, Q�, of CM ( ) ), and
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then we determine the bounded solution, QH, considering the constraint Q*r#b
�
#1, as well as

integrality.
We could not show any desirable property of CM ( ) ) with respect to r, b

�
, b

�
or t

�
. Thus,

(rH, bH
�
, bH

�
, tH

�
), the optimal solution of the remaining variables, is determined by performing an

exhaustive search on r, b
�
, b

�
and t

�
, while deriving QH at each iteration. The proposition below

provides a closed form solution for QH.

Proposition. QH, For any given value of (r, b
�
, b

�
, t

�
), is an integer that satisxes Q*r#b

�
#1,

either the closest to and below QI , or the closest to and above QI , where QI "max�Q�, r#b
�
#1�, and

Q� is the larger of the two roots of the following quadratic equation of Q:

h
2�

Q�#hE[¹
�
]Q#�"0, (13)

where

�"(�c#hE[I(�)])E[¹
�
]!

h
2��E[I�(�)]!r(r#1)�

!�K#�E[¸]#�( E[B]#��E[B
�
]#hE[I

�
]�.

With E[I(�)] and E[I�(�)] as given by Eq. (A1) in the appendix, and E[¹
�
], E[¸], E[B], E[B

�
] and

E[I
�
] by Eqs. (11), (12), (4), (5) and (6), respectively.

Proof. Let QI , be the relaxed solution of (P1) for any given value of (r, b
�
, b

�
, t

�
). To solve this

constrained single variable optimization problem we should explore the roots of

	CM ((r, b
�
, b

�
, t

�
); Q)/	Q"

	E[C]/	Q
E[¹]

!

E[C]
�E[¹]�

"0, (14)

or equivalently, since E[¹]'0, the roots of

�E[¹]	E[C]/	Q!E[C]"0. (15)

Using

	E[C]
	Q

"

h
�
Q#�c#

hE[I(�)]
� � and

	E[¹]
	Q

"

1
�
,

Eq. (15) reduces to the quadratic Eq. (13). We note that the coe$cients of both Q and Q� are
positive in Eq. (13), the derivative of CM ( ) ) with respect to Q.
Thus, if �(0, then Eq. (13) has exactly one positive real root (Q�) and one negative real root.

Thus, CM ( ) ) decreases with Q for 0)Q(Q� and increases with Q for Q'Q�, and hence,
QI "max�Q�, r#b

�
#1�. Since r#b

�
#1 is a positive integer, only when QI "Q�, the closest

integer on each side of QI , if satis"es Q*r#b
�
#1, is a candidate for QH. Otherwise, �'0, hence
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CM ( ) ) increases withQ for anyQ*0, and thusQI "r#b
�
#1. Here, the roots of (13) are both either

negative or complex. Combining both cases we obtain the proposition. �

If QI (r#b
�
#1, then inventory control policies that permit more than one outstanding order

should be considered. When Q�(0 or complex, then it is a good idea to question the accuracy of
the model parameters in real-life problems.
During the analysis, we conjectured that requiring b

�
"0 does not hurt optimality. The

rationale behind it was that for any given policy with b
�
'0 and t

�
'0, there exists another PB2

policy with b
�
"0 and some smaller t

�
and/or larger b

�
such that E[B] and E[¸] remain

unchanged. Thus, all the remaining cost components remain unchanged, exceptE[B
�
] . But E[B

�
]

must be reduced, since the "rst, up to b
�
, of the backordered demands are now taken later and thus

held for a shorter time each, while the remaining ones, up to b
�
!b

�
, would on the average be

taken during the same time period. In our numerical investigations the conjecture was rejected by
only a few cases. These cases, however, suggest that in practice assuming b

�
"0 would not involve

any signi"cant cost increase.

5. A numerical example

In this section, we examine the behavior of the PB2 policy and its performance versus its special
cases. We then examine the sensitivity of this relative performance, to the lost sales, backorder cost
parameters and the demand rate. Finally, we observe the shape of the objective function around the
optimal solution.
Before we present and discuss the results, two practical comments regarding the solution

process are presented. First, to avoid an exhaustive search of r, b
�
, b

�
and t

�
we have used

a hierarchical Golden-Section search. In our tests it always reached the same solution obtained by
an exhaustive search, though we could not identify su$cient conditions for that. Second, we treat
t
�
as integer, but the analysis does not really require that. The main advantage of t

�
being discrete

is in limiting the required computations. In this case, the basic probability functions can be
computed once for any combination of x and �t and then access them from memory as needed
throughout the search.
We use the following parameters: h"8, K"200, �"2, �"10, c"7.5, �("10 and ��"20.

Figs. 3a}d examine the e!ect of � (from 20 to 300) on the policy of PB1 and PB2. In Fig. 3a the
optimal values of the decision variables, r, Q and b of PB1 and r, Q, b

�
, b

�
, and t

�
of PB2, are

presented. The immediate "ll rate (IFR"1!(E[B]#E[¸])/�E[¹]) and the total "ll rate
(TFR"1!E[¸]/�E[¹]) of these solutions are presented in Fig. 3b. The sum r#b

�
#Q for PB2,

and r#b#Q for PB1 are presented as well, to demonstrate its relation to the "ll rates. In this
"gure, hollow shapes represent PB2 and solid PB1. Notice that as � (the cost per unit of lost sales)
increases, r, b

�
, b

�
and Q are used to hedge against lost sales. For �"40 and 60, PB1 coincides

with PL (b"0), while PB2 employs b
�

for backordering demands, a short time before the
replenishment. As a result, we observe its larger gap between TFR and IFR for these values of �.
Fig. 3c compares the optimal expected annual cost under PB2 policy, versus the same under PB1,
pure lost (PL) and pure backorder (PB) policies. Considering the cost under PB2 as 100%, the
marginal savings of PB1 over the best of PL and PB, and of PB2 versus PB1, are demonstrated in
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Fig. 3. (a) Optimal solutions of PB1 (upper) and PB2 (lower) versus � (b) Demand "ll-rates under PB1 and PB2 (hollow
shapes) versus �. (c) Comparison of PB2 with its special cases: PB1, PB and PL, versus �. (d) Contribution of PB2 vs. PB1
and of PB1 vs. PB and PL, as function of �.

Fig. 3d. The main advantage of PB2 is where lost sales cost is too low to justify backordering under
PB1 policy.
For �"120, the pure lost sales (PL) and the pure backorder (PB) policies switch the lead. At this

point the largest cost saving, of more than 15%, is achieved by employing PB2, while employing
PB1 can save about 13% (see Figs. 3c and 3d). The largest marginal contribution of PB2 versus
PB1 is not at this point, but for �"60, where PB1 provides no advantage since it coincides with
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PL (b"0 in Fig. 3a). The optimal control variables for PB2 at this point are r"10, Q"16,
b
�
"0, b

�
"5, and t

�
"8. The marginal cost saving of PB2 versus PB1 reaches 5.5%, while PB1

provides no advantage over PL. Demonstrating the importance and use of the #exibility provided
by the two-segment backorder control limits. For a "rm with a large volume of business, 15% and
even 5.5% of the inventory related costs could be substantial. In other examples, presented below,
the marginal cost saving of PB2 versus PB1 exceeds 7%.
Notice that, our conjecture that b

�
"0 is optimal, is rejected by some cases with �'120 (see

Fig. 3a). However, the marginal contribution of this variable to the objective is very limited (based
on other experiments that are not shown here). Thus, enabling elimination of one dimension in the
search with negligible e!ect on performance. In addition, when b

�
"0 the employment of the

policy in practice might be easier.
Another interesting observation is that optimal r under PB2 falls between the optimal r's under

PL and PB. We could not prove this result, but it prevailed throughout the numerous experiments
we run. This is despite of the fact that as � increases, the values of these r's switch their order. Such
a property can be used for limiting the search e!orts needed for solving PB2.
As expected, as � increases, the TFR increases (from 20 to 99%) (see Fig. 3b). The increase in IFR

is slower, initially IFR"20%, the same as TFR for �"20. The di!erence TFR}IFR, which
demonstrates the percentage of demand backordered, increases up to about 27% at �"160, and
kept the same at least up to �"300 (not shown). When TFR"99% at �'160, almost no lost
sales is tolerated.
For, �(20 the optimal PB2 solution is the pure lost-sales policy and for, �'200 it slowly

reduces to the pure backorder policy. Within the intermediate range, for 20)�)200, the optimal
PB2 policy employs the #exibility provided by the two-segment backorder limits, thus it is not
reduced to PB1. The solutions in this range favor lost sales during the "rst time segment and
limited backordering afterwards.
The combined e!ect of �( (values of 15, 20 and 25) and � (values from 20 to 200) is then examined.

The percentage cost savings of PB2 versus PB1, on top of the same of PB1 versus the best of PL
and PB, are presented in Fig. 4a (`pha denotes �( ). The signi"cant advantage of PB2 is preserved
within a wide range of the problem parameters. Similar results can be observed in Fig. 4b for the
combined e!ect of �� (values of 15, 20 and 25) and � (values from 20 to 200) (here `ppa denotes ��).
As expected, as the backorder cost parameters increase, the shift from lost sales policy to backorder
occurs for larger �. Fig. 4c demonstrates the e!ect of � (values 1, 2 and 3) on the relative advantage
of PB2 versus PB1 for various values of � (values from 20 to 200), (in the "gure `lama denotes �).
The sensitivity demonstration shows that the total saving of partial backorder policies might
exceed 7% for a wide range of problem parameters.
The shape of the objective function around the optimal solution is presented in Figs. 5a and b.

We used the following parameters: h"8, K"200, �"2, �"10, c"7.5, �"80, �("10, and
��"20. At this point, the optimal control variables for PB2 are r"12, Q"21, b

�
"0, b

�
"8, and

t
�
"7. The results demonstrate the di$culty to devise an e$cient search procedure. Too large

a quantity of r in this example causes a too large inventory, which diminishes the ability to employ
the backorder control variables. As a result, we witness a steep increase of the average cost with r.
In Fig. 5b we observe a diagonal valley near the optimal solution. As t

�
increases (the second time

segment is smaller), decreasing b
�
is preferred. Relatively small deviation in the combination of

t
�
and b

�
from optimality, might result in a signi"cant cost increase.
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Fig. 4. (a) Contribution of PB2 vs. PB1 and of PB1 vs. PB and PL, as function of �( and �. (b) Contribution of PB2 vs. PB1
and of PB1 vs. PB and PL, as function of �� and �. (c) Contribution of PB2 vs. PB1 and of PB1 vs. PB and PL, as function
of � and �.
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Fig. 5. (a) The objective function shape around the optimal solution for r and Q. (b) The objective function shape around
the optimal solution for t

�
and b

�
.

6. Conclusions

It makes sense to assume that the cost of a backordered demand increases when it takes longer to
ful"ll that demand. Such a time-dependent cost, does not make sense for lost sales. As a result, one
might consider losing demands that come early within the lead-time and backorder demands that
appear closer to the replenishment. This is the main idea underlying the two-segment partial
backorder policy (PB2). Some large chemical corporations employ this inventory management
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policy and we felt it worth analysis. Due to proprietary restrictions we cannot disclose further
corporate information.
The traditional backorder policy, the lost sales policy, and the one-segment partial backorder

policy (PB1) are all special cases of PB2, which provides even additional #exibility. Hence, a PB2
policy provides a uni"ed framework for studying policies that combine shortage and backorder.
In this paper we have de"ned, formulated, solved and demonstrated PB2 and numerically

explored the behavior of this policy with respect to various cost parameters. A closed form solution
is provided for the order quantity, in regards to any given values of the remaining control variables.
We also conjectured, that the optimal backorder limit during the "rst time segment should be zero.
The conjecture was rejected but we found out that setting b

�
"0, would not signi"cantly harm the

objective.
A numerical example demonstrates that the PB2 policy can achieve a cost saving of more than

7% over the best of pure backorder (PB), pure lost sales (PL) and PB1 policies. The cost saving of
PB2 over the best of PB and PL might exceed 15%. Another important "nding is that the largest
cost saving occurs at the breakeven point where the pure backorder policy and the pure lost sales
policy yield identical expected annual costs. The advantage of PB2 is signi"cant over a wide range
of the problem parameters. The merits of PB2 is for small values of lost sales cost (�). There, while
PB1 coincides with the PL policy, PB2 provides economically justi"ed opportunity for backorder-
ing some of the otherwise, lost sales.
Future works will incorporate solution strategy for "nding optimal continuous-valued t

�
to-

gether with the integer-valued b
�
, b

�
, r, and Q. An e$cient computational procedure still needs to

be developed. This includes establishing bounds for b
�
and b

�
to facilitate the search for optimal

solutions, and using a more e$cient search technique. In addition, general demand processes other
than Poisson such as compound Poisson, compound renewal or Markov renewal demand
processes may be used. Also, partial backorder policies that utilize more than two time segments of
backorder control limits could be explored. Finally, we intend to further develop and test
applications of the model with `reala data from companies that face this type of problem. With the
chemical company we work with, an inventory cost saving of 2}4% is expected, by implementing
the model in its inventory control system.
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Appendix

Expected inventory level at the replenishment time: The state space I(�), is
�!b

�
,!b

�
#1,2,!b

�
,2,0,2, r!1, r�. Its kth moment can be derived as follows:
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Expected number of backorders: The number, B, of backorders in a cycle, is given by
E[B]"EB
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)], where B
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where 
"max(b
�
, 1).

Expected time-dependent backorder per cycle: The expected time-dependent backorder, E[B
�
], is

de"ned by Eq. (5). Let us "rst de"ne the following two expressions:
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and
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The "rst component of (5) is given by

�
��

�
E[B

�
(t)] dt"�

��

� �
	����

�
��	��

(i!r)p(i; �t)#b
�
P(b

�
#r; �

��dt

"

	����
�

��	��

(i!r)�
��

�
p(i; �t) dt#b

��
��

�
P(b

�
#r; �t) dt

"

	����
�

��	��

(i!r)g(i, �, t
�
)#b

�
G(b

�
#r, �, t

�
). (A.5)

The second component of (5) can be decomposed into three parts as follows:
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Expected inventory time after replenishment: Let us derive E[I
�
] as given in Eq. (7). The quantity

Q#I(�) is the random inventory level just after replenishment. The time between arrivals of
demand events is exponentially distributed with mean 1/�. Thus for a given I(�), the expected
accumulated inventory time from a replenishment epoch until the next ordering time is given by

E[I
�
�I(�)"x]"

1
�

���	��

�
���

(x#Q!y)"
1
2��(x#Q)�!r(r#1)�. (A.7)

Hence,
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where the moments of I(�) are given by (A.1).
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