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ABSTRACT

In this paper, we formulate a mixed integer programming model
for routing containerships.  Our model helps in evaluating the optimal
sequence of port calls and the number of containers transported
between port pairs given the trip cycle time.  Some numerical ex-
amples and a real world application of the Trans Pacific route are
presented.  The computational results show that our model, which
solve the mixed integer programming optimally, is quite efficient and
applicable to real world problem.

INTRODUCTION

A containership involves a major capital invest-
ment and the daily operating cost of a containership may
amount to thousands of dollars.  Proper selecting En
route Ports and scheduling of containerships could yield
great potential of improving their economic perfor-
mance or cost savings.

Most  l iner  shipping companies operat ing
containerships assign a number of ships on a particular
trade route fixed by two end ports and many en route
ports.

The liner operation resembles a bus line-it pub-
lishes timetables and competes for cargo.  Since the
route of a containership, once determined, is difficult to
change for a certain period of time, the routing decision
should be made carefully after a thorough study.  In
order to adjust for changing environments, such as
changes in freight rates, in cargo demand, in interna-
tional regulations, or in operating cost, the liner ship-
ping company should rearrange the route periodically.
Based on the reasons mentioned above, it is worthwhile
to formulate an analytic model solving the problem.

We conclude this section by presenting a survey

of relevant work in this area.  Many useful vehicle
routing problems have been studied.  A comprehensive
survey can be found in Bodin et al. [3].  In contrast to
vehicle routing, little work has been done in ship rout-
ing and scheduling.  In the past, there have been at-
tempts to solve ship routing and scheduling problems.
Dantzig and Fulkerson [6] considered the first linear
programming model, which minimizes the number of
tankers to meet a fixed schedule.  Flood [8] dealt with
the same problem by minimizing the total distance in
ballast, given a fleet size.  The above two models are the
pioneers of Operations Research applications in ship
routing and scheduling.

Further extension of the above two models are
considered by Briskin [5], Bellmore et al. [2], McKay
and Hartney [10].  Baker [1], Stott and Douglas [18],
and Fisher and Rosenwein [7] developed an interactive
ship scheduling systems.  There have been some papers
on optimization models in sea transportation, but the
majority have been on industrial carriers, bulk carriers,
and tankers.

As to liner management, Boffey et al. [4] devel-
oped a heuristic model and an interactive decision sup-
port system for scheduling containerships on the North
Atlantic route.  Olson et al. [11] used a simulation
model to obtain the medium range scheduling for a
freighter fleet.  Rana and Vickson [14, 15] presented
nonlinear models.  They tried to maximize total profit
by finding an optimal sequence of ports of call for each
ship.  For solution, they presented Lagrangean relax-
ation and decomposition methods.

Perakis and Jaramillo [12], and Jaramillo and
Perakis [9] formulated a linear programming model to
minimize total fleet operating and lay-up cost during a
planning horizon.  Powell and Perakis [13] extended the
work developed by Jaramillo and Perakis.  An integer
programming model is developed to minimize the oper-
ating and lay-up cost for a fleet of liner ships operating
on various routes.

A complete survey of literaute on ship routing is
presented in references [16] and [17].  The rest of this
paper is organized as follows: The formal presentation
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of the model is explained in Section 2.  Section 3
provides some numerical examples and illustrates some
of the capabilities of the model applied to the Trans
Pacific route.  The final section concludes this paper.

MODEL FORMULATION

Most l iner  shipping companies operat ing
containerships assign a number of ships on a particular
trade route fixed by two end ports and many en route
ports.  Our model also restrict ourselves to this case.

1. Model Assumptions

The assumptions of our model are as the following:
1.It is not necessary to visit all the ports.
2.The ship changes direction at the starting (port 1) and

the ending ports (port n).
3.The operating costs at sea and at port are known.
4.the cargo is available at a uniform rate at each port.

2. Decision Variables and Parameters

The decision variables are defined as follows:
Xij: the number of containers transported from port

i to port j.

  
Z i =

1 if port i is visited in the outboundroute
0 otherwise

  
ZB i =

1 if port i is visited in the inbound route
0 otherwise

  

Y ij =
1 if ports i and j are directly connected

in the outboundroute
0 otherwise

  

YB ij =
1 if port i and j are directly connected

in the inbound route
0 otherwise

Other parameters are defined as follows:

n: total number of ports in the network.
Pij: revenue charged per container for a port pair (i,j).
Ki: the operating costs at port i.
Cij: the operating costs at sea from port i to port j.
PDij: expected number of containers available to be

transported from port i to j, over the planning
period.

Tij: travel time for a ship from port i to port j.  It is

equal to the distance between port i and port j,
divided by the average ship’s speed from port i to
port j.

SPTi: time stayed in port i (including time required for
the ship to load and unload at port i, plus pilotage
time while leaving and entering harbour i.

W: the number of weeks allowed of a round trip (an
integer number).

SP_LOAD: the shipload of a containership.

3. Objective Function

Max    Z = Σ
i
Σ
j

P ijX ij – Σ
i

K iZ i – Σ
i

K iZBi

   – Σ
i
Σ
j

C ijY ij – Σ
i
Σ
j

C ijYB ij

The objective function maximizes the profit
(revenue-operating costs).  The constraints of the model
are listed below:

4. Departure Constraints

   Σ
j = i + 1

n

Y ij – Z i = 0 (i = 1, ..., n − 1) (1)

   Σ
j = 1

i – 1

YB ji – ZB i = 0 (i = 2, ..., n) (2)

If a ship is not visiting the specific port i, the cargo
cannot be transported.  Constraint (1) and (2) ensure all
possible departures from port i for outbound trip and
inbound trip, respectively.

   Σ
i = j + 1

n

Y ij = 0 (j = 1, ..., n − 1) (3)

   Σ
i = j + 1

n

YB ij = 0 (j = 1, ..., n − 1) (4)

Constraint (3) and (4) prevent the ship from trav-
eling in different direction for outbound trip and in-
bound trip, respectively.

5. Arrival Constraints

Constraint (5) and (6) enumerate all possible arriv-
als at port i  for outbound trip and inbound trip,
respectively.

   Σ
j = 1

i – 1

Y ji – Z i = 0 (i = 2, ..., n) (5)

   Σ
j = i + 1

n

YB ij – ZB i = 0 (i = 1, ..., n − 1) (6)

6. Capacity Constraints

Xij ≤ PDijYij(i = 1, ..., n − 1; j = i + 1, ..., n)     (7)
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Xij ≤ PDijYBij(i = 1, ..., n − 1; j = i + 1, ..., n)   (8)

   Σ
possible

Σ
i, j

X ij ≤ SP _ LOAD

(i = 1, ..., n; j = 1, ..., n) (9)

In constraint (7), if Yij equals to one, constraint (7)
will be equal to Xij ≤ PDij.  If Yij is equal to zero,
constraint (7) will be equal to Xij ≤ 0.  By coupling two
different cases together, we can ensure that the number
of containers transported from port i to port j will be
equal to zero or less than or equal to the expected
number of containers available to be transported for
outbound trip.  With similar reasoning, constraint (8)
imposes a similar restriction on Xij for inbound trip.

Constraint (9), applied to all port pairs, ensures
that the total number of containers transported from any
port i to port j (i < j for outbound trip; i > j for inbound
trip) will not exceed the ship’s capacity.

7. Connected Constraints

Zi + Zj − Yij ≥ 0 (i = 1, ..., n − 1; j = i + 1, ..., n)
(10)

Zi + Zj − 2Yij ≥ 0 (i = 1, ..., n − 1; j = i + 1, ..., n)
(11)

ZBi + ZBj − YBij ≥ 0

(i = j + 1, ..., n; j = 1, ..., n − 1) (12)

ZBi + ZBj − 2YBij ≥ 0

(i = j + 1, ..., n; j = 1, ..., n − 1) (13)

The inequalities in constraints (10) and (11) stand
for the relationship between the port pair (i, j) for
outbound trip.  By combining constraints (10) and (11),
we can ensure that Yij reprents whether port i and j are
directly connected.  Constraint (10) would be equal to
one only if port i and j are directly connected.  If port i
and j are not directly connected, constraint (11) would
force Yij to equal zero.

The constraints (12) and (13) impose a similar
relationship between port pair (i , j) for inbound
trip.

8. Route Time Constraints

   Σ
i = 1

n – 1

Σ
j = i + 1

n

T ijY ij + Σ
i = j + 1

n

Σ
j = 1

n – 1

T ijYB ij + Σ
i = 1

n

SPT iZ i

   + Σ
i = 1

n

SPT iZB i – SPT nZB n ≤ 168W

(i = 1, ..., n; j = 1, ..., n) (14)

There are 168 hours in one week and W is an
integer number.  168W specifies the cycle time voyage
in hours and the left hand side of constraint (14) ensures
that the total time spend by a ship at sea and in harbor do
not exceed the cycle time.

In general, the liner serves its customers based on
weekly service.  Once the cycle time is determined; the
required vessels  for  operat ing wil l  be known
automatically.  For example, if the cycle time is one
week, one week trip needs only one vessel.  If the cycle
time is two weeks, a two-week trip needs two vessels.

NUMERICAL  EXAMPLE

In order to demonstrate the applicability of our
model, we first use an artificial data to provide some
numerical examples and sensitivity analysis.  Then, a
real world application of the Trans Pacific route from
Yang Mine Line in Taiwan is also presented.  The
detailed information of the artificial data (Tables 1-5) is
listed as follows:

Both cycle time and shipload are main factors in
route planning.  First, we investigate the effect on the
selection of En route ports by varying cycle time.  The
optimization software LINDO version 6.1 is used to
solve our model.  Figures 1-4 show the service routes
under different cycle time.  From Figure 1, we can see
that all ports are visited.  In this case, the cycle time is
7 weeks so that the liner shipping company needs 7
vessels for weekly service.  By reducing the cycle time
one week at a time, we can see that the number of ports
visited and the total profit of each scenario (Table 6)
with respect to cycle time are decreasing (Figures 2-4).
It is clear that when the cycle time is not long enough
(the company does not own enough containerships and
does not intend to charter additional ships), the
containership cannot visit all ports.  From the above
observations, we know that our model can help in
selecting the optimal sequence of port calls.

Table 1.  Stay time and operating cost at port (hour, $)

1 2 3 4 5 6 7 8

Stay time     16     12     16     12     13     13     17     18
Port charges 1500 1000 1700 1100 1150 1400 1800 1950
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Table 3.  Expected number of containers available to be transported between port pairs (TEU)

1 2 3 4 5 6 7 8

1     0   95 125 150 190 250 260 170
2 110     0   80 130 160 210 190 210
3 140   70     0 110 110 90 150 200
4 190 140   50     0   85 90 120 170
5 250   90 115   50     0 160 200 180
6 220   95 140 130 210     0   80   95
7 180 150 120   75 140   60     0   80
8 120 140 120 110 105   80   40   60

Table 4.  The operating costs at sea between port pairs ($)

1 2 3 4 5 6 7 8

1     0   36 100 144 168 200 258 286
2   42     0   72 136 160 190 215 238
3 108   80     0   80 100 106 156 192
4 152 148   90     0   24   60 173 154
5 180 172 112   30     0   42 141 174
6 216 204 118   70   48     0   73   51
7 250 207 151 168 135   67     0   49
8 274 225 185 148 164   55   47     0

Table 2.  Revenue charged per container between port pairs ($/TEU)

1 2 3 4 5 6 7 8

1     0   35   75 100 230 220 255 270
2   30     0   50 100 198 170 215 280
3   80   65     0   75 160 140 205 265
4 115 105   65     0   45 120 260 300
5 115 113   65   50     0 150 220 245
6 220 195 130 120   90     0   70   90
7 180 150 150 140 160   80     0 120
8 200 210 185 210 165   90   50     0

Table 5.  The traveling time at sea between port pairs (hour)

1 2 3 4 5 6 7 8

1     0   36 100 144 268 300 358 386
2   42     0   72 136 260 290 315 338
3 108   80     0   80 200 206 256 292
4 152 148   90     0 224 260 273 254
5 180 172 112   30     0   42   51   74
6 216 204 118   70   48     0   35   51
7 350 307 251 268   48   67     0   27
8 374 325 285 248   64   51   27     0
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Next, we test the effects on the selection of En
route ports by changing shipload.  800 TEU and 1000
TEU, two different capacities of shipload are tested and
the cycle time of 7 weeks is used.  From Figure 5, we can
see that both cases have the same sequence of port calls.

The main reason is that the liner shipping company
wants to maximize its profit so all ports are visited while
the cycle time is long enough.  But if we look at Table
6 carefully, we can find that the numbers of containers
transported between two cases are different.  Based on

Fig. 1.  Service route for cycle time 7 weeks and shipload 1500 TEU.

Fig. 2.  Service route for cycle time 6 weeks and shipload 1500 TEU.

Fig. 3.  Service route for cycle time 5 weeks and shipload 1500 TEU.

Fig. 4.  Service route for cycle time 4 weeks and shipload 1500 TEU.
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Table 6.  The number of container transported between port pairs under different cycle time and shipload

TEU ≤ 1500 TEU ≤ 1500 TEU ≤ 1500 TEU ≤ 1500 TEU ≤ 800 TEU ≤ 1000
Cycle ≤ 7 weeks Cycle ≤ 6 weeks Cycle ≤ 5 weeks Cycle ≤ 4 weeks Cycle ≤ 7 weeks Cycle ≤ 7 weeks

1-2   95   95   95     0     0     0
1-3 125 125 125     0     0     0
1-4 150 150 150 150     0 130
1-5 190 190 190 190 120 190
1-6 200 200 200 200 200 200
1-7 260 260 260     0 260 260
1-8 170 170 170 170 170 170
2-3   80   80   80     0 80   80
2-4 130 130 130     0 130 130
2-5 160 160 160     0 160 160
2-6 110 110 110     0 110 110
2-7 190 190 190     0 190 190
2-8 210 210 210     0 210 210
3-4 110 110 110     0 110 110
3-5 110 110 110     0 110 110
3-6   90   90   90     0   90   90
3-7 150 150 150     0 150 150
3-8 200 200 200     0 200 200
4-5  85   85   85   85   85   85
4-6   90   90   90   90   90   90
4-7 120 120 120     0 120 120
4-8 170 170 170 170 170 170
5-6 160 160 160 160 160 160
5-7 200 200 200     0 200 200
5-8 180 180 180 180 180 180
6-7   80   80   80     0   80   80
6-8   95   95   95   95   95   95
7-8   80   80   80     0   80   80
8-1 120 120 120 120 120 120
8-2 140 140     0     0 140 140
8-3 120     0     0     0 120 120
8-4 110 110 110     0 110 110
8-5 105 105     0     0 105 105
8-6   80   80   80   80   80   80
8-7   40   40     0     0   40   40
7-1 180 180     0     0 180 180
7-2 150 150     0     0 150 150
7-3 120     0     0     0 120 120
7-4   75   75     0     0   75   75
7-5 140 140     0     0 140 140
7-6 60   60     0     0   60   60
6-1 220 220 220 220 220 220
6-2   95   95     0     0   95   95
6-3 140     0     0     0 140 140
6-4 130 130 130     0 130 130
6-5 210 210     0     0 210 210
5-4   50   50     0     0   50   50
5-3 115     0     0     0 115 115
5-2 90   80     0     0   90   90
5-1 250   40     0     0 250 250
4-3   50     0     0     0   50   50
4-2 140 140     0     0 140 140
4-1 190 190 190     0 190 190
3-2   70     0     0     0   70   70
3-1 140     0     0     0 140 140
2-1 110 110     0     0 110 110

PROFIT 1147467 1047740 812226 324717 1108320 1144920
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the observations above, we know that our model can
help in determining the optimal number of container
transported between port pairs in different scenarios.

Finally, we use one of the Trans Pacific route
provided by Yang Ming Line in Taiwan for testing our
model.  The service ports of Trans Pacific route in the
United States include Los Angeles and Okaland.  In the
Asia ports, Hong Kong, Keelung, Kaohsiung and
Yokohama are included (see Figure 6).  Currently Yang
Mine Line deploys 5 vessels with the capacities of
3500 TEU on this route for weekly service and the cycle

time is 5 weeks.
We use the same cycle time to test the applicability

of our model.  The parameters are the same as those in
Tables 1-5 and the real data are not shown here.  Test
result solved by our model is shown in Figure 7.  By
comparing two figures, we note that the ports called
solved by our model are not identical to those by the
Yang Ming Line.

Pusan, Yokohama and Long Beach are not in-
cluded in the service ports of Trans Pacific route for
outbound trip.  After discussing with the route manager
of the Yang Ming Line, we know that in order to provide
better service level and increase competition ability, the
Yang Ming Line opens three different routes to serve
the customers in Asia and the United States of America.
Pusan and Yokohama are currently served by another
route.

The main reason for Long Beach is not visited is
that the shipping company usually chooses only port to
call in the neighboring area to cut down operating costs
and shorten the cycle time.  Since the distance between
Long Beach and Los Angeles is not far away, containers
can be transferred by land.

Though our model is applicable to real world
problem and has taken main factors in routing into
consideration, the route planning manager suggests that
in a highly competition environment, a single route
planning is not adequate for business decisions in the
future.  A more complicate network planning and even
an expert system should be developed to facilitate in
decision making.

CONCLUSION

In this paper, we have formulated a mixed integer
programming model for routing containerships.  Our
model helps in evaluating the optimal sequence of port

Fig. 5. Service route for cycle time 7 weeks and shipload 800TEU and
1000TEU.

Fig. 6.  Service route of Yang Ming Line.

Fig. 7.  Service route solved by our model.
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calls, the number of containers transported between
port pairs given the trip cycle time.  Our model is
different from previous works in that our problem can
be solved directly using optimization software and very
quick in terms of time.  Furthermore, once the cycle
time is determined; the number of vessels needed for
weekly service is known automatically.  Based on this
information, the liner shipping company can evaluate
whether additional containerships should be chartered
or not.  An important topic for future research is an
extension of single route planning to more complicate
network planning.
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