品質管制

1.緒論

品質管制的各種層面

11.統計的製程管制

A. 管制程序

抽樣與矯正措施為管制程序的一部分,有效管制之步驟:1.定義2.衡量3.與標準比較4.評估5.若有必要,採取矯正措施。

- B. 變異與管制
- C. 管制圖
 - 1. 計量值管制圖
 - a. 平均數管制圖(X bar Chart)

UCL =
$$\overline{x}$$
 + $z (\sigma \sqrt{n})$
LCL = \overline{x} - $z (\sigma \sqrt{n})$

e.g. 茲從鋁棒製程抽樣分配,得其平均數為2cm。已知鋁棒製程變異性為常態, 其標準差為0.1cm。請算出製程抽樣樣本為16及25的99.74%樣本平均數之管 制界限

遞增的樣本數使管制界限更接近於製程平均數

e.g. 茲從製程抽取 n=8 之樣本 20 組,已知 20 組樣本之樣本全距平均數為 0.016 cm,樣本平均數為 3 cm。

solution:

UCL =
$$\overline{x}$$
 + A $_2$ \overline{R}
LCL = \overline{x} - A $_2$ \overline{R}
已知 n = 8 , \overline{x} = 3 cm , \overline{R} = 0.016 cm 查表得到 A $_2$ = 0.37
UCL = \overline{x} + A $_2$ \overline{R} = 3 + 0.37 (0.016) = 3.006
LCL = \overline{x} - A $_2$ \overline{R} = 3 - 0.37 (0.016) = 2.994

樣本組中觀測數目	A ₂	D₃	D₄	
2	1.88	0	3.27	
3	1.02	0	2.57	
4	0.73	0	2.28	
5	0.58	0	2.11	
6	0.48	0	2.00 1.92	
7	0.42	0.08		
8	0.37	0.14	1.86	
9	0.34	0.18	1.82	
10	0.31	0.22	1.78	
11	0.29	0.26	1.74	
12	0.27 0.25	0.28	1.72	
13		0.31	1.69 1.67	
14	0.24	0.33		
15	0.22	0.35	1.65	
16	0.21	0.36	1.64	
17	0.2	0.38	1.62	
18	0.19	0.39	1.61	
19	0.19	0.40	1.60	
20	0.18	0.41	1.59	

b. 全距管制圖(R Chart)

e.g. 茲從製程抽取 n=10 之樣本 25 組,已知 20 組樣本之樣本全距平均數為

0.01cm,請算出樣本全距管制圖之管制上限與管制下限

solution:

UCL =
$$D_4 \overline{R}$$

LCL = $D_3 \overline{R}$
已知 n = $10 \overline{R} = 0.01$ cm 查表得到 $D_4 = 1.78$ 與 $D_3 = 0.22$
UCL = $D_4 \overline{R} = 1.78 (0.01) = 0.0178$

$$LCL = D_3 \overline{R} = 0.22 (0.01) = 0.0022$$

2. 計數值管制圖

a. P 管制圖

請使用下列資訊,繪製管制圖,每組樣本之大小為 100,請算出製程抽樣 95.5% 之管制上限與管制下限

樣本組別	不良數	樣本組別	不良數
1	14	11	8
2	10	12	12
3	12	13	9
4	13	14	10
5	9	15	11
6	11	16	10
7	10	17	8
8	12	18	12
9	13	19	10
10	10	20	16

Solution: 95.5%時, z為2

UCL
$$_{p} = \overline{p} + z \hat{\sigma}_{p}$$

LCL $_{p} = \overline{p} - z \hat{\sigma}_{p}$
 $\overline{p} = \frac{\overline{R} + \overline{R} + \overline{R$

b. C 管制圖

使用 C 管制圖監控線圈的品質。假設檢視 18 捲線圈,每捲缺點數之記錄如下列所示。請問此製程是否為管制狀態?並將這些值繪於 z=2 之管制圖上。

樣本	缺點數	樣本	缺點數
1	3	11	3
2	2	12	4
3	4	13	2
4	5	14	4
5	1	15	2
6	2	16	1
7	4	17	3
8	1	18	1
9	2		
10	1		

Solution:

$$\frac{-}{c} = \frac{$$
缺點數總數 $}{$ 樣本總數 $} = \frac{45}{18} = 2.5$

管制界限為

UCL
$$_{c} = \overline{c} + 2\sqrt{\overline{c}} = 2.5 + 2\sqrt{2.5} = 5.66$$

LCL $_{c} = \overline{c} - 2\sqrt{\overline{c}} = 2.5 - 2\sqrt{2.5} = -0.66$ 以0取代

D. 連串檢定

e.g. 茲從製程抽取 20 組樣本平均數,如下列所示。請使用中位數與上下連串檢, (z=2),以判斷是否有可指定變異原因存在。假設中位數為 11。

樣本	A/B	U/D	平均數	樣本	A/B	U/D	平均數
1	В	ı	10	11	В	ם	10.7
2	В	U	10.4	12	Α	U	11.3
3	В	D	10.2	13	В	D	10.8
4	Α	U	11.5	14	Α	U	11.8
5	В	D	10.8	15	Α	D	11.2
6	Α	J	11.6	16	Α	J	11.6
7	Α	D	11.1	17	Α	D	11.2
8	Α	U	11.2	18	В	D	10.6
9	В	D	10.6	19	В	J	10.7
10	В	U	10.9	20	Α	U	11.9

Solution: A/B 有 10 個連串, U/D 有 17 個連串。

每種檢定之期望連串為

$$E(r)_{\text{priss}} = \frac{N}{2} + 1 = \frac{20}{2} + 1 = 11$$

$$E(r)_{\text{L/F}} = \frac{2N - 1}{3} = \frac{2(20) - 1}{3} = 13$$

標準弄為

$$\sigma_{\Phi \hat{\square} b} = \sqrt{\frac{N-1}{4}} = \sqrt{\frac{20-1}{4}} = 2.18$$

$$\sigma_{\text{L/F}} = \sqrt{\frac{16N-29}{90}} = \sqrt{\frac{16(20)-29}{90}} = 1.8$$

Z檢定值為

$$Z_{\text{prob}} = \frac{10-11}{2.18} = -0.46$$
 $Z_{\text{L/F}} = \frac{17-13}{1.8} = 2.22$

資料出現非隨機變異 , 因此製程不在管制狀態

111. 連續改進

continuous improvement 係指尋求改進製程有關的任何因素之想法。其涵蓋設備、方法、原料與人員。連續改進想法之關鍵部份在於致力於改進之信念應永不歇止。

- A. 管理者的需求
- B. 連續改進的程序
 - 1.選擇改進程序,且設定改進目標
 - 2.研究並用文件證明現有程序
 - 3.尋求改進程序的方法
 - 4.設計改進程序
 - 5.執行改進程序
 - 6.評估改進程序
 - 7.用文件的改進,與所有關係者溝通,並在新系統中擬定適當的訓

練。

下列因素可更進一步說明連續改進活動的本質:

- 1. 標準化(文件化)
- 2. 計劃-實施-檢核-行動循環(PDCA)
- 3. 所使用的方法與工具

流程圖、檢核表、柏拉圖分析、腦力激盪、管制圖、面談、R&D、員工、競爭者、品管圈、魚骨圖、連串圖。

IV. 檢驗與允收抽樣

- A. 生產過程中有三點需要進行檢驗: 生產前(允收抽樣)、生產期間(製程管制)、生產後(允收抽樣)。
- B. 檢驗的基本內容
 - 1. 檢驗的數目?多久檢驗一次
 - 2. 製程何處需要進行檢驗?
 - a. 原料與採購零件
 - b. 製成品
 - c. 昂貴作業之前
 - d. 不可變更的製程之前
 - e. 包裝程序之前
 - 3. 集中與就地檢驗?
- C. 允收抽樣

抽樣計劃:規定批量大小、樣本大小、取樣數目和允收/拒絕標準。

抽樣計劃種類很多:單一抽樣、雙重抽樣、多重抽樣。

作業特性曲線(operating characteristic curve): 貨批不良率對貨批接受率所繪出的曲線,可幫助辨認生產者風險與消費者風險。