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_ estimation of the.constant 7 (='3.14159), and matrix inversion.
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* Theradius of the circle is = 5 cm, and its center is (x,y) = (1,2). ‘
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MONTE CARLO SIMULATION | L.

A forerunner to present-day simulation is the Mdnie Carlo experiment, a modeling
scheme that.estimates stochastic or deterministic parameters based on random sam-
pling. Examples of Monte Carlo applications include evaluation of multiple integrals,

. This section uses an example to demonstrate the Monte Carlo technique. The
objective of the example is to emphasize the statistical nature of simulation. -

*% L

Example 19.1-1
We will use Monte Carlo sampling to estimate the area of the following circle:
T G- 1P+ -2P=25

The procedure for estimating the area requires enclosing the circle tightly in a square whose
side equals the diameter of the circle, as shown in Figure 19.1. The corner points are determined
from the geometry of the square. ' _

The estimation of the area of the circle is based on a sampling experiment that gives equal
.chance to selecting any point in the square. If m out of n sampled points fall within the circle, then

o Approximate ) m( Area of > m
: =—{ . =— X
<area of thé circle/ .- n \thesquare/ " n (10 > 10)

. E f . -
To ensure that all the points in the square are equally probable, the coordinates x and y of
a point in the square are represented by the following uniform distributions:

A
=
IA
=)

fl(x)V: %7 -

ZON 3= y=T
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(-4, 7 ‘ 6,7

FIGURE 19.1

Monte Carlo estimation of the
area of a circle : (-4,-3) ' 6,-3)

The determination of a sample (x, y) is based on the use of independent 0-1 random numbers:
Table 19.1 lists a sample of such numbers which we will use in the examples in this chapter. For the
purpose of general simulation, special arithmetic operations are used to generate (pseudo) 0-1
random numbers, as will be shown in Section 19.4.

A pair of 0-1 random numbers, R; and R,, can be used to generate
’ a random
in the square by using the following formulas: & point (x, y)

—4+[6 - (-4IR,
; y=-3+[7- (—3)]R2' -3 + 10R,
To demonstrate the apphcatlon of the procedure, consider R; = 0589 and R, = .6733.

X

Il

“4 + 10R,

= —4 + 10R, = —4 + 10 X 10589 = —3.411 °
y=-3+10R,=-3+10x 6733 =373

This point falls inside the circle because . .
.

(=3411 = 1) + (3733 - 22 = 22.46 < 25

Remarks. The accuracy of the area estimate can be enhanced by usmg procedures
from ordinary statrstlcal experiments:

1. Increase the sarnple size, n. . ST
2. Use replications, N.

TABLE 19.1 ' A Short List of O-i Random Numbers

..0589 .3529 5869 3455 .7900 ‘..6307
6733 3646 1281 4871 7698 2346
4799 7676 .2867 8111 2871 4220
.9486 .8931 8216 8912 9534 6991
6139 3919 8261 4291 1394 9745
N .5933 7876 .3866 2302 9025 3428
< 9341 5199 7125 5954~ 1605 6037
1782 .6358 2108 5423 3567 2569 .
.3473 7472 3575 4208 - 3070 .0546
*.5644 .8954 2926 .6975 5513 .0305

19.1  Monte Carlo Simulation 683
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The discussion in Example 19.1-1 poses two questions regarding the simulation
experiment:

1. How large should the sample size be?
2. How many replications are needed?

There are some formulas in statistical theory for determining » and N, and they depend on
the nature of the simulation experiment as well as the desired confidence level. However,
asin any statistical experiment, the golden rule is that higher values of n and N mean more
accurate simulation results. In the end, the sample size will depend on the cost associated
with conducting the simulation experiment. Generally speaking, however, a selected sam-
ple size is considered “adequate” if it produces arelatively “small” standard deviation.

It is.necessary to express the results as a confidence interval to account for the
random variation in the output of the experiment. Letting A and s be the mean and
variance of N rephcatrons then given a confidence level a, the confldence interval for
the true area A is :

A=A+ '—S—tg N=1

VN
Theparameter te N-118 determined from the -distribution tables givena confidence level
aand N — 1 degrees of freedom (see the ¢-table in Appendix A or use excelStatTables.xls).
Note thatsN equals the number of replicdtions, which is drstlnct from the sample size n.

‘,. o .
-

Excel Momenl'

The cornputatlons assoc1ated with each sample in Example 19.1-1 are volummous Excel template
excelCircle.xls (with VBA rnacros) is used to test the effect of samplé size and number, of replica-

- tions on the accuracy of the area estimate. The input data include the circlé radius, r;and its center

(cx, cy); sample size, n; number of replications, N; and the confidence level a. The entry Steps in
cell D4 allows executing several samples in the same run. For example if n = 30,000 and Steps

= 3, the template will automatically produce output for n = 30 000, 60,000, and 90,000. New
estimates are realized each time the command button, Press Carlo is clicked

- because Excel refreshes the seed of the random number generator.

Figure 19.2 summarizes the\results for 5 replications and sample sizes of 30,000, 60,000, and
90,000. The exact area is 78.54 cm?, and ‘the Monte Carlo results show that the mean estimated
areas for the three sample sizes are slightly different. -

Figure 16. 2" gives the 95% confidence intervals for each n.-For example the confldence
interval 78452 < A = 78.68 corresponds to n = 90,000, with N =5, A =78. 566 cm?, and
s = .092 cm, and t 54 = 2.776. In general, to realize reasonable accuracy in the estlmatlon of
the confidence interval, the value of N should be at least 5.

PROBLEM SET 19.1A

1 In Example 19.1-1, estimate the area of the circle using the first two columns of the 0- 1
random numbers in Table 19.1. (For convenience, go down each column, selecting Ry
first afid then R,.) How does this estimate compare with the ones given in Figure 19.2?
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mal of the ea 6? a Circle
Input data

Nbr. Replications, N = S5la= 0.025
Sample size,n= 30,000| S5teps = 3
Radius, r= 5
Center, cx = 1
Center, cy = 2

Qutput ireasuits -
Exact area = 78.540
Mdnw Carlo Cété&iaﬁonsz L L :

e © p=30000 . n=B000D n‘SDDBG
Replication 1 78.590 78.543 - 78.536
Replication 2 78.447 78.695 78.731
Replication 3 78.747 78.648 78.534
Reaplication 4 78.363 - 78.500 78.512
 Replication 5 78.540 78.420 78517
Mean = 78.6537 B ’?8,'561 k?S.EBE
Std. Devigtion = 0.142 0118 0.082 =
95% lower conf. fimit= | 78.361 78416 78.452]

195% upper conf. limit = 78.714 78.708 . 78.680 ‘E‘
FIGURE 19.2 - | A

Excel output of Monte Carlo estirﬁatidn of the area of a circle (file excelCircle.xls)
2. Suppose that the equation of a circle is
(x — 4P+ (y+ 32 =25 IR

(a) Define the cofresponding distributions f(x) and f(y), and then show how & sample
point (x, y) is determined using the (0, 1) random pair (R, Ry).

- (b) Use excelCircle.xls to estimate the area and the assoclated 95% confldence interval,

given n = 100,000 and N = 10.
3. Use Monte Carlo sampling to estimate the area of the lake shown in Fxgure 19. 3 Base
the estimate on the first two columns of (0, 1) random numbers in Table 19.1.
4. Consider the game in which two players, Jan and Jim, take turns in tossing a fair coin.
If the outcome is heads, Jim gets $10 from Jan. Otherwise, Jan gets $10 from Jim.
*(a) How is the game simulated as a Monte Carlo experiment? :
(b) Run the experiment for 5 replications of 10 tosses each..Use the first flve columns

of the 0-1 random numbers in Table 19.1, with each column correspondlng to on¢
. replication. , .

*T.
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7 FIGURE 19.3
Lake map for Problem 3, Set 19.1A

(c¢) Establisha 95% confldence 1nterva1 on Jan’s winnings.
(d) Compare the.confidence interval in (c) with Jan’s expected theoretical winnings.

1
/ x2dx
0

(a) Develop the Monte Carlo eXperiment to estimate the valueof the integral.

(b) Use the first four columns in Table 19.1 to evaluate the integral based on 4 replications
of size 5 each. Compute 2 95% confldence mterval and compare it with the exact
value of the integral. :

. Consider the following definite integral:

. Simulate five wins or losses of the following game of craps: The player‘rolls two fair dice.
-"If the outcome stmis 7 or 11, the player wins $10. Otherwise, the player records the

resulting sum (called point) and keeps on rolling the dice until the outcome sum matches
-the recorded point, in which case the player wins $10. ffa7i is obtained prlor to matchmg

. the point, the player IOSes $10.

The lead time for receiving an order can be 1 or 2 days, with equal probablhtles

The demand per day assumes the values 0,1, and 2 with the respective probabilities

of .2,.7,and .1. Use the random numbers in Table 19.1 (starting with column 1) to estimate
the joint distribution of the demand and lead time. From the joint distribution, estimate
the pdf of demand during lead time. (Hint: The demand durmg lead time : assumes discrete
values from 0 to 4.)

. Consider the Buffon needle experiment. A horizontal plane is ruled with parallel lines

spaced Dcm apart. A needle of length dem (d < D) is dropped randomly on the plane.
_The objective of the experiment is to determine the probability that either end of the
needle touches or crosses one of the lines. Define

h = Perpendicular distance from the needle center to a (parallel) line
9 = Inclination angle of the needle with a line
(a) Show that the needle will touch or cross a line only if

hs:isine,Oshs —g—,og()sw

~ (b) Design the Monte Carlo experlment and prov1de an estimate of the desired

probability.
(c) Use Excel to obtain 4 rephcatlons of size 10 each of the desired probability. Determine
a 95% confidence interval for the estimate. Assume D = 20cmandd = 10 cm.

g

nnmﬁnnnllllIII"”%_ I
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(d) Prove that the theoretical probability is given by the formula M 19.3 ELEMENTS OF DISCRETE EVENT SIMULATION

2d . ' . . Lo . .

=5 : ‘ ) The ultimate goal of simulation is to estimate some desirable measures of performance
(e) Use the result i ] that describe the behavior of the simulated system. For example, in a service facility,
0. Desion a M sult in (c) togfither with the formula in (d) to estimate . ' the associated measures of performance can include the average waiting time until
R [Hinfn( 2 re ;r;';e _Cgrllo e/xgerlment for estimating the value of the constant . : a customer is served, the average length of the queue, and the average utilization of the
: a'circle)/(Area of rectangle tightly enveloping the circle) = w/4.] service facility. This section shows how the statistics of the simulated system are

collected based on the concept of events.

19.2  TYPES OF SIMULATION 19.3.1 Generic Definition of Events

All discrete event simulations describe, directly or indirectly, queuing situations in
which customers arrive (for service), wait in a queue (if necessary), and then receive
service before leaving the service facility. As such, any discrete event simulation,
regardless of the complexity of the system it describes, reduces to dealing with two

1. Continuous models deal with systems whose behavior changes continuously with basic events: arrivals and departures. The following example illustrates the use of the
al and departure events to describe a system consisting of distinct queues.

time. These models usually use difference-differential equations to describe the arriv

interactions among the different elements of the system i
HEC] At
with the study of world population dynamics. ’ 'yplcal" example deal

2. Discrete models deal primarily with the study of waiting linéé, with the objective

Ee tzxeéution of present—d.ay sirr'lulation is based on the idea of sampling used with the
onte arlo metl.lod. It filffers in t‘hat it deals with the study of the behavior of real
systems as a function of time. Two distinct types of simulation models exist.

Example 19.3-1

Metalco Jobshop receives two types of jobs: regular and rush. All jobs are processed on two

i of determini o O
1t : etermining such measures as the average waiting time and length of the ; . . - . ..
i queue. These measures change only when a customer enters or leaves the svst consecutive machines with ample buffer areas. Rush jobs always assume nonpreemptive priority
| The instants at which chan ystem. over regular jobs. | ‘ ' ' »
: ges take place occur ific di ints in t T reguiar Joos. ; ' : L : -
p at specific discrete points in time This situation consists of two tandem queues representing the two machines. At first, one

arrivals and departu ivi i i i
( ; P re events), giving rise to the name discrete event simulation. may be inclined to identify the events of the situation as

o }’ltlllls chapter presents tbe basi.cs of discrete event simulation, including a:-:descrip-' - ALLA regul.arjob ;.mives at mza‘ghine L
 of the components of a simulation model, collection of simulation statistics,'and the A21: A rush job arrives at machine 1.
:ltlaz:l:(t);cal aspect of.the 51r'11ulation expeﬁment. The chapter also emphasizes che role of . ~ D11: A regular job departs machine 1.
mputer and simulation languages in the execution of simulation modéls. O D21: A rush job departs machine 1.
B ’ o ' A12: A regular job arrives at machine 2.
. ’ A22: A rush job arrives at machine 2.
;' “‘)‘ PROBLEM SET 19.2A ‘ ‘ g D12: A regular job departs machine 2.

1L (()Sfalt)egtlolrizle the following si'tuations as either discrete or continuous (or a co;nbit;ation D22: A rush job departs machine 2 '
oth). In each case, specify the objective of developing the simulation model. ’ In reality, there are only two events: an arrival of a (new) job at the shop and a departure of a (com-

*(a) .Orders‘for an item arrive randomly at a warehouse. An order that cannot be filled pleted) job froma machine. First notice that events D11 and A12 are actually one and the same.The
‘ immediately from available stock must await the arrival of new shipments same applies to D21 and A22. Next, in discrete simulation we can use one event (arrival or depar-
) = (b) World population is affected by the availability of natu ral resources. food p'ro ductic ture) for both types of jobs and simply “tag” the event with an a.ttribu'te that identifies the job type
environmental conditions, educational level, health care, and capital’ investments ’ as either regular or rush. (We can think of the attribute in this case as a personal identification
(9) Goods arrive on pallets at a receiving bay of an automated wareh . Th ) descriptor,and indeed it is.) Given this reasoning, t.he events of the mode} reduce‘: to (1) an.arrival A
are loaded on a lower conveyor belt and lifted through an u ?éle Oltlse.t ne pallets (at the shop) and (2) a departure D (from a machine). The actions a§§oc1ated with the a.rnyal event
conveyor that moves the pallets to corridors. The corridors aI;e sz‘r’a %rbo an upper depends on the type of arriving job (_rush or regular) and the availability of a machine. Sfrmlarly, the
pick up the pallets from the conveyor and place them in storage bf’e y cranes that . processing of thet departure e.vent w111\deper_1d on tpe machine and the status of waiting _]obs.
. 2. Explain why you would agree or disagree with the followi & 1115 X ) ' ' Having qeflned the baS}c eventsof a §1mulat10n_ model, we show how the model is gxecut'ed.
event simulation models can be viewed 0 some fe ollowing statement: Most discrete . Flgure 19.4 gives a schemz_ltlc repres.entatlo.n of typical occurrences of events on the 51mu.1at10n
~ consisting of sources from which cust © form or another as queuing systems. timescale. After all the actions associated with a current event have been performed, the simula-
omers arrive, gueues where customers may wait, . tion advances by “jumping” to the next chronological event. In essence, the execution of the

and facilities where customers »
are served. . . . .
ed . : simulation occurs at the instants at which the events occur.

l
4 ’ I
,—‘_lll"|"'|[n1m
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FIGURE 19.4

Example of the occurrence of simulation events on the timescale

How does the simulation determine the occurrence time of the events? The arrival events
are separated by the interarrival time (the interval between successive arrivals), and the depar-
ture events are a function of the service time in the facility. These times may be deterministic
(e.g.,a train arriving at a station every 5 minutes) or probabilistic (e.g., the random arrival of cus-
tomers at a bank). If the time between events is deterministic, the determination of their occur-
rence times is straightforward. If it is probabilistic, we use a special procedure to sample from the
corresponding probability distribution. This point is discussed in the next section.

PROBLEM SET 19.3A
1

Identify the discrete events needed to simulate the following situation: Three types of
jobs arrive from different sources. All three types are processed on a single machine, with
the highest priority given to jobs from the first source followed by source 2, then source3.
2. Jobs arrive at a constant rate at a carousel conveyor system. Two service stations <
are spaced equally around the carousel. If the server is idle when a job arrives at the
station, the job is removed from the conveyor for processing. Otherwise, the job :
continues to rotate on the carousel until a server becomes available. A processedjob

is stored in an adjacent shipping area. Identify the discrete events needed to simul‘glte
this situation.

3. Cars arrive at a two-lane, drive-in bank, where each lane can house a maximum of four
cars. If the two lanes are full, arriving cars seek service elsewhere. If at any time one lane
is at least two cars longer than the other, the last car in the longer lane will jockey to the
last position in the shorter lane. The bank operates the drive-in facility from 8:00 A.M.
to 3:00 p.M. each work day. Define the discrete events for the situation. '

*4, The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all its
pupils. Kids arrive at the dispensing window every 30 seconds. It takes 18 seconds to

< receive the lunch tray. Map the arrival-departure events on the time scale for the first
e five pupils. ’

Randomness in simulation arises when the interval, ¢, between successive events is
probabilistic. This section presents three methods for generating successive random
samples (¢ = 11,1, ... ) from a probability distribution f(z):

1. Inverse method.
2. Convolution method.
3. Acceptance-rejection method.

19.3 Elements of Discrete Event Simulation 689

The inverse method is particularly suited for analytically tractable probability density
functions, such as the exponential and the uniform. The remaining two methods deal
with more complex cases, such as the normal and the Poisson. A.ll three methods
are rooted in the use of independent and identically distributed uniform 0-1 random
numbers. : . .

This section will present the first two methods only. Details of the acceptance—
rejection method can be found in the bibliography.

" Inverse method. Suppose that it is desired to obtain a random sample x from the

(continuous or discrete) probability density function f(x). The inverse method first

determines a closed-form expression of the cumulative density function F (x) =

P{y = x}, where 0 = F(x), < 1, for all defined values of yo o '

It can be proved that the random variable z = F(x)'is uniformly f:hstrlbute'd in
the interval 0 < z =< 1. Based on this result,a random sample from f (x) is determined
using the following steps (F ~Lis the i{nverse of F):

Step 1. Generate a 0-1 random number, R.
Step 2. Compute the desired sample x = F YR).

Figure 19.5 illustrates the procedures for both a continuous and a discrete random
distribution. :

Example 19.3-2 (Exponential Distribution)

The exponential probability density function f(¢) = e ™Mt > Olre'pre:sents th(; interarrival time
t at a facility with a mean value of% . The cumulative density function is

t N
F(r) =/ AeMdx=1-— e'\"’,t >0
0

Setting R = F(¢), we can solve for ¢ as

t=—<%>ln(1—R)

FIGURE 19.5
Sampling from a probability distribution by the inverse method
F(x) F(x)
1

0 X1 x

(a) x Continuous : (b) x Discrete
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For example, for A = 4 customers per hour and R = .9, the time period until the next arrival
oceurs is

A 1 .
= —<Z ) In(1 — .9) = .577 hour = 34.5minutes

Note that In(1 — R) may be replaced with In(R) because 1 ~ R is the complement of R.

PROBLEM SET 19.3B ' )

*1. In Example 19.3-2, suppose that the first customer arrives at time 0. Use the first three
random numbers in column 1 of Table 19.1 to generate the arrival times of the next
3 customers, and graph the resulting events on the timescale.
*2. Uniform Distribution. Suppose that the time needed to manufacture a part on a machine
is described by the following uniform distribution: ’
1
10 = 57—
- Determine an expression for the sample ¢, given the random number R.
3. Jobs are received randomly at a one-machine shop. The time between arrivals is exponential
with mean 2 hours. The time needed to manufacture a job is uniform between 1.1 and
2 hours. Assuming that the first job arrives at time 0, determine the arrival and departure
time for the first five jobs using the (0, 1) random numbers in column 1 of Table 19.1.
4. The demand for an expensive spare part of a passenger jet is 0,1, 2, or 3 units per
month with probabilities .3, .3, .2, and .2, respectively. The airline maintenance shop
starts operation with a stock of 6 units and will bring the stock level back to 6 units
immediately after it drops below 5 units. . . .
*(a) Devise the procedure for sampling demand. <,

(b) How many months will elapse until the first replenishment occurs? Use successive
values of R from the first column in Table 19.1. ’ ’

5. In asimulation situation, TV units are inspected for possible defects. There is an 70%
chance that a unit will pass inspection, in which case it is sent to packaging. Otherwise,
the unit is repaired. We can represent the situation symbolically in one of two ways.

goto REPAIR/.3, PACKAGE/.7 Ll
goto PACKAGE/.7, REPAIR/.3

,ast=<p)

o

i:~‘3

These two representations appear equivalent. Yet, when a given sequence of (0, 1)
random numbers is applied to the two representations, different decisions (REPAIR

or PACKAGE) may result. Explain why. .

6. A player tosses a fair coin repeatedly until a head occurs. The associated payoff is 3",
where 7 is the number of tosses until a head comes up.

(a) Devise the sampling procedure of the game.

(b) Use the random numbers in column 1 of Table 19.1 to determine the cumulative
payoff after two heads occur. '

7. Triangular Distribution. In simulation, the lack of data may make it impossible to
* determine the probability distribution associated with a simulation activity. In most of
these situations, it may be easy to describe the desired variable by estimating its smallest,
most likely, and largest values. These three values are sufficient to define a triangular.
distribution, which can then be used as “rough cut” estimation of the real distribution.

19.3 Elements of Discrete Event Simulation 691

(a) Develop the formula for sampling from the following triangular distribution, whose
respective parameters are a, b, and c:

2(x — a) - -

o (b—a)(c~a)"a_x—b

f) = 2(c — x) b <y < .
Cc—-bc—a 'TF=€

(b) Generate three samples from a triangular distribution with parameters (1,3,7)

using the first three random numbers in column 1 of Table 19.1.
8. Consider a probability distribution that consists of a rectangle flanked on the left and

right sides by two symmetrical right triangles. The respective ranges for the triangle

on the left, the rectangle, and the triangle on the right are [a, b], [, c], and [c, d],

a < b < ¢ < d. Both triangles have the same height as the rectangle.

(a) Develop a sampling procedure. '

(b) Determine five samples with (4, b, ¢, d) = (1,2, 4, 6) using the first five random
numbers in column 1 of Table 19.1. 3

*9, Geometric distribution. Show how a random sample can be obtained from the following
geometric distribution:

| fx)=pd-pY,x=01,2 ... .

The parameter x is the number of (Bernoulli) failures until a success occurs, and p is the
probability of a success, 0 < p < 1. Generate five samples for p = .6, using the first five
random numbers in column 1 of Table-19.1. ] ’ .

10. Weibull distribution. Show how a random sample can be obtained from the Weibull distri-
bution with the following probability density function:

f(x) = afx* e x >0
where a > 0 is the shape parameter,and 8 > 0 is the scale parameter.

Convolution method. The basic idea of the convolution method is to express the
desired sample as the statistical sum of other easy-to-sample random variables. Typical
among these distributions are the Erlang and the Poisson whose samples can be
obtained from the exponential distribution samples. .

Example 19.3-3 (Erlang Distribution) ‘ ‘

The m-Erlang random variable is defined as the statistical sum (convolutions) of 7 independent
and identically distributed exponential random variables. Let y represent the m-Erlang random
variable; then

y=ntynt -ty

where y;,i = 1,2, ..., m, are independent and identically distributed exponentials with the
following probability density function:

fO) =A™, y,>0,i=12,...,m




692

Chapter 19 . . Simulation Modeling
From Example 19.3-2, a sample from the ith exponential distribution is computed as

. 1
= —(X)ln(Ri),i= 1,2,...,m

Thus, the m-Erlang sample is computed as

-
1l

—<%){ln(Ri) + In(Ry) + -+ + In(R,,)}

1 m
(1 )n(f1=)

AJ NGt
To illustrate_rthe use-of the formula, suppose that m‘ = 3 and A = 4 events per hour. The first
3 random numbers in column 1 of Table 19.1 yield R;R,R; = (.0589)(.6733)(.4799) = .0190,

which yields

y = —(4)In(.019) = .991 hour

Example 19.3-4 (Poisson Distribution)

Section. 18.4.1 shows that if the distribution of the time between the occurrences of successive
eyents is exponential, then the distribution of the number.of events per unit time is Poissof¥, and
vice versa. We use this relationship to sample the Poisson distribution. . . ‘ ’

' Assume that mean of the Poisson distribution is A events per unit time? It follows that the
time between events is exponential with mean % time units. This means that a Poisson sarﬁple n
will occur during ¢ time units if, and only if, ' o

Period till event n occurs = r < Period till event z + 1 occurs
This condition translates to

ce

htb+ o+, =t<ti+b+ - +t,,,n>0

0<t<t,n=0

The ralndom yariable ;i =1,2,...,n+ 1,is a sample from the exponential distribution with
mean j. From the result in Example 19.3-3, we have ’ ‘

1 n 1 n+1
{3 In HR,-) =t < —(—) ln(HRi),n >0
=1 A i1
1
0=r< —<X)ln (R),n=0
These expressions reduce to
n n+l
Rize™>J[R,n>0
=1 =1

1lze*>R,n=0
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To illustrate the implementafion of the sampling process, suppose that A = 4 events per
hour. To obtain a sample for a period ¢ = .5 hour, we first compute e = 1353, The random
number R; = .0589 is less than ¢ = .1353. Hence, the corresponding sample is n = 0.

&

Example 19.3-5 (Normal Distribution)

The central limit theorem (see Section 14.4.4) states that the sum (convolution) of n indepen-
dent and identically distributed random variables becomes asymptotically normal as n becomes
sufficiently large. We use this result to generate samples from normal distribution with mean
and standard deviation a.

Define

x=R +R,+ ... +R,

The random variable is asymptotically normal by the central limit theorem. Given that the
uniform (0, 1) random number R has a mean of% and a variance of 11—2, it follows that the mean
and variance of x are § and {5, respectively. Thus, a random sample, y, from a normal distribution
N(u, o), with mean p and standard deviation o, can be computed from x as

n

)
y=m+ao n
N

12

In practice, we take n = 12 for convenience, which reduces the formula to
y=pup+o(x—06)

To illustrate the use of this method, suppose_that we wish to generate a sample from
N(10,2) (mean u = 10 and standard deviation ¢ = 2). Taking the sum of the first 12 random
numbers in columns 1 and 2 of Table 19.1, we get x = 6.1094. Thus, y = 10 + 2(6:1094 — 6) =
10.2188. ‘ :

Box-Muller normal sampling formula. The disadvantage of the preceding procedure
is that it requires generating 12 random numbers per normal sample, which is
computationally inefficient. A more efficient procedure calls for using the
transformation

x = cos(RmRy)V —2In(Ry) |

Box and Muller (1958) prove that x is a standard N(0,1). Thus, y = u + ox will
produce a sample from N(u, o). The new procedure is more efficient because it
requires two 0-1 random numbers only. Actually, this method is even more efficient
than stated, because Box and Miller prove that the given formula produces another
N(0, 1) sample if sin(27Ry) replaces cos(27Ry).
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- To illustrate the implementation of the Box-Muller procedure to the normal distri-
bution N(10,2), the first two random numbers in column 1 of Table 19.1 yield the
following N(0, 1) samples: ‘

X1 = cos(2m X .6733)\/ -2 In(.0589) ~ —1.103
sin(2m X .6733)\V/ -2 In(.0589) ~ —2.109 .

Thus, the corresponding N(10, 2) samples are

X3

yi =10 + 2(~1.103) = 7.794
¥ =10 + 2(~2.109) = 5.782

PROBLEM SET 19.3C!

*1. In Example 19.3-3, compute an Erlang sample, given m = 3 and A.= 10 évents per hour.

2. In Example 19.3-4, generate three Poisson samples during a half-hour period, given that
the mean of the Poisson is 9 events per hour.

3. In Example 19.4-5, generate two samples from N(7, 2) by using both the convolution
method and the Box-Muller method. ' o

4. Jobs arrive at Metalco Jobshop according to a Poisson distribution, with a mean of 6 jobs
per day. Received jobs are assigned to the five machining centers of the shop on a strict
rotational basis. Determine one sample of the interval between the arrival of jobs at the
first machine center. : e

5. The ACT scores for the 1994 senior class at Springdale High is normal, with a mean of
27 points and a standard deviation of 3 points. Suppose that we draw a random sample

of six seniors from that class. Use the Box-Muller method to determine the mean and
standard deviation of the sample.

*6. -Psychology professor Yataha is conducting a learning experiment in which mice
are trained to find their way around a maze. The base of the maze is square.
A mouse enters the maze at one of the four corners and must find its way through
the maze to exit at the same point where it entered. The design of the maze is such
that the mouse must pass by each of the remaining three corner points exactly once
before it exits. The multipaths of the maze connect the four corners in a strict
clockwise order. Professor Yataha estimates that the time the mouse takes to reach
‘one corner point from another is uniformly distributed between 10 and 20 seconds, *
depending on the path it takes. Develop a sampling procedure for the time a mouse
spends in the maze.

7. In Problem 6, suppose that once a mouse makes an exit from the maze, another mouse

instantly enters. Develop a sampling procedure for the number of mice that exit the
maze in 5 minutes.

IFor all the problems of this set, use the random numbers in Table 19.1 starting with column 1.
( 7‘;, .

i
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8. Negative Binomial. Show how a random sample can be determined from the negative
binomial whose distribution is given as

f(x)=C* 1~ p),x=0,1,2, ...

where x is the number of failures until the rth success occurs in a sequence of inc'ieper‘ldent
Bernoulli trials and p is the probability of success,0 < p < 1. (Hint. The negative bino-
mial is the convolution of r independent geometric samples. See Problem 9, Set 19.3B.)

GENERATION OF RANDOM NUMBERS

Uniform (0, 1) random numbers play a key role in sampling from distributions. Tr}le 0-1
random numbers can be generated by electronic devices only. However, because simula-
tion models are executed on the computer, the use of electronic devices to generate
random numbers is much too slow for that purpose. Additionally, electronic devices are
activated by laws of chance, making it impossible to duplicate the same sequence of
random numbers at will. This point is important because debugging, verification, and val-
idation of the simulation model often require duplicating the random nun.lbe.rs sequence.

The only feasible way for generating 0-1 random numbers for use in 51mulat1or} is
based on arithmetic operations. Such numbers are not truly ranfiom because the entire
sequence can be generated in advance. It is thus more appropriate to r¢fer to them as
pseudorandom numbers. . ‘ ‘

The most common arithmetic operation for generating (0, 1) random numbers is
the multiplicative cbngruential method. Given the parameters uy, b,c, and m,
a pseudorandom number R, can be generated from the formulas:

u, = (bu,_{ + cymod(m),n = 1,2, ...
R, = ﬂ,n =12, ...
m
The initial value ug is usually referred to as the seed of the generator.

Variations of the multiplicative congruential method that improve the quality of
the generator can be found in Law (2007). :

Example 19.4-1

Generate three random numbers based on the multiplicative congruential method using b = 9,
¢ =5,and m = 12.The seed is 1y = 11.

8
up = (9 X 11 + 5)mod12 = 8, Ry = - = .67

5
i, = (9 X8+ 5modl2 =5R, = - 4167

2
uy= (9 X 5+ S)mod12 = 2, Ry = -+ = 1667
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Excel Moment

Excel template excelRN.xls implements the multiplicative congruential method. Figure 19.6
generates the sequence associated with the parameters of Example 19.4-1. Notice that the cycle

- length is exactly 4, after which the sequence repeats itself. The point to be made here is that
the selected values of ug, b, ¢, and m are critical in determining the (statlstlcal) quality of the
generator and its cycle length. Thus, “casual” implementation of the congruential formula is not
recommended. Instead, one must use a reliable and tested generator. All commercial computer
programs are equipped with dependable random number generators.

PROBLEM SET 19.4A

-

*1, Use excelRN.xls with the following sets of parameters, and com'pare the results with those
of Example 19.4-1:

b=17,¢c = 111, m = 103,seed = 7

FIGURE 19.6
Excel random numbers output for the data of Example 19.4-1 (file excelRN.xls)

ultiplicative Congruential Method .
Input data(B7<=1000) :
b= 9 e
g = 5 .
b= 11
im=_ 12
{How many numbers? 10

Generated random numbers:

0.66667
0.41667 S B
0.16667
0.91667
(.66667
0.41667
0.16667
0.91667
0.66667
0.41667

e
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2. Find a random number generator on your computer, and use it to generate 500 zero-one
random numbers. Histogram the resulting values (using the Microsoft histogram tool,
see Section 12.5) and visually convince yourself that the obtained numbers reasonably
follow the (0, 1) uniform distribution. Actually, to test the sequence properly, you would
need to apply the following tests: chi-square goodness of fit (see Section 14.6), Tuns test
for mdependence and correlatlon test—see Law (2007) for details. .

MECHANICS OF DISCRETE SIMULATION

This section details how typical statistics are collected in a simulation model. The
vehicle of explanation is a single-queue model. Section 19.5.1 uses a numeric example
to detail the actions and computations that take place in a single-server queuing
simulation model. Because of the tedious computations that typify the execution of
a simulation model, Section 19.5.2 shows how the single-server model is modeled and
executed using Excel spreadsheet.

Manual Simulation of a Single-Server Model

The interarrival time of customers at HairKare Barbershop is exponential with mean
15 minutes. The shop is operated by only one barber, and it takes between 10 and
15 minutes, uniformly distributed, to do a haircut. Customers are served on a first-in,
first-out (FIFO) basis. The objective of the simulation is to compute the following
measures of performance:

1. The average utilization of the shop.
2. The average number of waiting customers.
3. The average time a customer waits in queue.

The logic of the simulation model can be described in terms of the actions associ-
ated with the arrival and departure events of the model.

Arrival Event

1. Generate and store chronologically the occurrence time of the next arrival event
(= current simulation time -+ interarrival time).
2. If the facility (barber) is idle
a. Start service and declare the facility busy. Update the facility utilization statistics.
b. Generate and store chronologically the time of the departure event for the
customer (= current simulation time + service time).

3. If the facility is busy, place the customer in the queue, and update the queue statistics.

Departure Event

1. If the queue is empty, declare the facility idle. Update the facility utilization statistics.

2. If the queue is not empty
a. Select a customer from the queue, and place it in the facility. Update the facility
utilization and queue statistics.
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b. Generate and store chronologically the occurrence time of the departure event
for the customer (= current simulation time + service time).

From the data of the problem, the interarrival time is exponential with mean 15 min-

utes, and the service time is uniform between 10 and 15 minutes. Letting p and ¢ represent -

random samples of interarrival and service times, then, as explained in Section 19.3.2, we get

p=-—15 ln(R)minutes,O =R=1
g =10 + SRminutes, 0 = R =1

For the purpose of this example, we use R from Table 19.1, starting with column 1.
We also use the symbol T to represent the simulation clock time. We further assume that
the first customer arrives at T = 0 and that the facility starts empty.

Because the simulation computations are typlcally voluminous, the. simulation is
limited to the first 5 arrivals only. The example is designed to cover all possible
situations that could arise in the course of the simulation. Later in Section 19.5.2, we
introduce the template excelSingleServer.xis that allows experimenting w1th the model
without the need to carry out the computations manually.

Arrival of customer1at T = 0. Generate the arrival of customer 2 at
T = 0 + pp = 0 + [~15In(.0589)] = 42.48 minutes = o

Because the facility is idle at T = 0, customer 1 starts service immediately. The departure
time is thus computed as

T=0+gq =0+ (10 + 5 X .6733) = 13.37 minutes

The chronological list of future events thus becomes

Time, T Event

13.37 Departure of customer 1
42.48 Arrival of customer 2

Departure of customer 1 at T = 13.37. Because the queue is empty, the facility is
declared idle. At the same time, we record that the facility has been busy between
T = 0and T = 13.37 minutes. The updated list of future events becomes

Time, T Event

42.48 Arrival of customer 2

Arrival of customer 2 at T = 42.48. Customer 3 will arrive at

T =4248 + [—15 In(.4799)] = 53.49 minutes

19.5  Mechanics of Discrete Simulation 699

Because the facility is idle, customer 2 starts service, and the facility is declared busy.
The departure time is

T = 4248 + (10 + 5 X .9486) = 57.22 minutes

The list of future events is updated as

Time, T Event

53.49 Arrival of customer 3
57.22 Departure of customer 2

Arrival of customer 3 at T = 53.49. Customer 4 will arrive at
= 5349 + [-15In(.6139)] = 60.81 minutes

Because the facility is currently busy (until 7 = 57.22), customer 3 is placed in queue
at T = 53.49.The updated list of future events is -

Time, T Event

57.22 Departure of customer 2
60.81 Arrival of customer 4

Departure of customer 2 at T = 57.22. Customer 3 is taken out of the queue to start
service. The waiting time is

W; = 57.22 — 53.49 = 3.73 minutes
The departure time is
T =5722 + (10 + 5 X .5933) = 70.19 minutes

‘The updated list of future events is

Time, T Event

60.81 Arrival of customer 4
70.19 Departure of customer 3

Arrival of customer 4 at T = 60.81. Customer 5 will arrive at
T = 60.81 + [—151n(.9341)] = 61.83 minutes

Because the facility is busy until 7 = 70.19, customer 4 is placed in the queue. The
updated list of future events is

Time, T Event

61.83 Arrival of customer 5
70.19 Departure of customer 3
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Arrival of customer 5 at T = 61.83. The simulation is limited to 5 arrivals, hence
customer 6 arrival is not generated. The facility is still busy, hence the customer is
placed in queue at T = 61.83. The updated list of events is

Time, T Event

70.19 Departure of customer 3

Departure of customer 3 at T = 70.19. Customer 4 is taken out of the queue to start
service. The waiting time is ’

W, = 70.19 — 60.81 = 9.38 minutes -
The departure time is |
’ ~ T=7019 +[10 + 5 X .1782] = 81.08 minutes

The updated list of future events is

Time, T Event

81.08 Departure of customer 4
o

Departure of customer 4 at T = 81.08. Customer 5 is taken out of the queue-to start
service. The waiting time is .

1

Ws = 81.08 ~ 61.83 = 19.25 minutes
The departure time is ‘
T = 81.08 + (10 + 5 X .3473) = 92.82 minutes

The updated list of future events is

Time, T Event

92.82 Departure of customer 5

.

Departure of customer 5 at T'= 92.82. There are no more customers in the system
(queue and facility) and the simulation ends.

Figure 19.7 summarizes the changes in the length of the queue and the utilization
of the facility as a function of the simulation time.

The queue length and the facility utilization are known as time-based vari-

ables because their variation is a function of time. As result, their average values ar¢
computed as ~

( Average value of a ) _ Area under curve
time-based variable Simulated period

4
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Queue length
2 -
1 | —
| | J
10 20 30

Facility utilization

20 30 40 50 60 70 80 90

FIGURE 19.7

Changes in queue length and facility utilization as a function of simulation time, T

Implementing this formula for the data in Figure 19.7, we get

A+ A .
(Average queue) _ 4 2 _ 3236 _ 349 customer

length 9282 9282
Average facility) A3+ Ay _ 63.71
( utilization )~ 9282 oa.gp _ ‘080 barber

The average waiting time in the queue is an observation-based variable whose
value is computed as

Average value of an ) _ Sum of observations
observation-based variable Number of observations

Examination of Figure 19.7 reveals that the area under the queue-length curve
actually equals the sum of the waiting time for the three customers who joined the
queue; namely, '

Wi+ W+ Wi+ W+ Ws =0+ 0+ 3.73 + 938 + 19.25 = 32.36 minutes

The average waiting time in the queue for all customers is thus computed as

Wq = % = 6.47 minutes

PROBLEM SET 19.5A

1. Suppose that the barbershop in Section 19.5.1 is operated by two barbers, and customers
are served on a FCFS basis. Suppose further that the time to get a haircut is uniformly
distributed between 15 and 30 minutes. The interarrival time of customers is exponential,
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with a mean of 10 minutes. Simulate the system manually for 75 time units. From the ; Determine the following measures of performance:
results of the simulation, determine the average time a customer waits in queue, ' (a) The average utilization of the facility.
the average number of customers waiting, and the average utilization of the barbers.

(b) The average busy time of the facility.

' in Table 19.1. .
Use t.he random mhxmbers'm able .9 . . (c) The average idle time of the facility.
2. Classify the following variables as either observation based or time based: . - . ,
*(a) Time-to-failure of an electronic component. 19.5.2 Spreadsheet-Based Simulation of the Single-Server Model :

* item. . . ; - il
() Inventory level of an item This section develops a spreadsheet-based model for the single server model. The ‘ 1

objective of the development is to reinforce the ideas introduced in Section 19.5.1. Of
course, a single-server model is a simple situation that can be modeled readily in

(¢) Order.quantity of an inventory item.
(d) Number of defective items in a lot.

(e) Time needed to grade test papers. a spreadsheet environment. Other situations require more involved modeling effort, i
() Number of cars in the parking lot of a car-rental agency. : a task that is facilitated by available simulation packages (see Section 19.7). I
*3. The following table represents the variation in the number of waiting customers ‘ The presentation in Section 19.5.1 shows that the simulation model‘of the single- it
in a queue as a function of the simulation time. server facility requires two basic elements: il f

1. A chronological list of the model’s events.

Simulation time, T (hr) ~ No. of waiting customers ‘ 2. A graph that keeps track of the changes in facility utilization and queue length.

0=<T =<3 0 These two elements remain essential in the development of the spreadsheet-based ittt
3<T =<4 1 (indeed, any computer-based) simulation model. The difference is that the implemen- |
4<T =6 2 tation is realized in a manner that is compatible with the use of the computer. As in ?
6<T =7 1 Section 19.5.1, customers are served in order of arrival (FIFO).

7<T =10 0 o Figure 19.8 provides the output of excelSingleServer.xls. The input data allow

10<T=12 2 representing the interarrival and service time in one of four ways: constant, exponential,

12<T=18 3 ’ uniform, and triangular. The triangular distribution is useful in that it can be used as a

;(8) Z ; i 2(5) i rough initial estimate of any distribution, simply by providing three estimates a, b, and ¢

that represent the smallest, the most likely, and the largest values of the interarrival or

FIGURE 19.8 Hilintae

-Compute the following measures of performance: L ) ) i ‘
Excel output of a single-server simulation model (file excelSingleServer.xls)

(a) The average length of the queue.

(b) The average waiting time in the queue for those who must wait. : - FENTHTD E |
4. Suppose that the barbershop described at the start of Section 19.5.1 is operated by _ T T f"‘?’""“*‘;‘;g"‘ 5"’”’“{5‘“"“0"’“@?‘4_‘.’”@‘
three barbers. Assume further that the utilization of the servers (barbers) is summarized Entor & In columm A to sslect Interarivel pif [T Prerntt Soraest AT Depatt Vo vis T,
as given in the following table: Constant = $o.303 sy ooy 1283 000 1283 i
. Exponentialii= | 0.067) 25370 1471 373] 2785 810 2382 AR
- |Uniform: = b= 336 1221 803 3375 B45 M0E5
Triangular; |a= o= c= 4 119 1115 1295 5084 2680 3798
] . . : . Enter x in column A to select service time pdb ) 13 1492 2705 6585 2388 3380
Simulation time, 7' (hr) No. of busy servers . . Constant = : & 3570 . 1422 3441 8007 3145 a5 I
. 10 |Exponentialia - BB 450 7ol 94 oy 244 il
0<T=10 0 1 x |[Uniform: (o= Oib=i 15 425 1335 7071 W2eY 2387 31 !
B Friangular: o= b= le= 4385 1245 7495 12038 3297 4541
10<T =20 1 1 743 1157, 7981 13194 4055 5213
20<T =30 2 1 899 HER B724] 850 2470 £834
~ 12 487 1285 9523 15943 5036 632D
30 <T =40 0 PressFote |1 421412, 14601 17385 1343 2754
40 <T =60 1 tiggera | M 77 136544643 1872412713 4082
60 < T =< 70 2 new smulation| 15 1119 1050 15520 197.75 3205 425 :
- 3 . % 4282 5638 211463 3136 45U ' ‘
70 <T =80 171987 123970320 22382 230 W82 il
80 < T =90 1 18928 9522507 24200 000 xg@i I
19 1395 129323233 25500 270 1645 ! :
0 <T=100 0 90 Bs4sT 140325231 26990 271) 1753 Al
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‘19,6

service time. The only other information needed to drive the simulation is the length of _

the simulation run, which in this model is specified by the number of arrivals that can be
generated in the model. .

The spreadsheet calculations reserve one row for each arrival. The interarrival
and service times for each arrival are generated from the input data. The first arrival is
assumed to occur at T = 0. Because the facility starts idle, the customer starts service
immediately. The spreadsheet provides sufficient information to demonstrate the
internal computations given in Section 19.5.1.

Another spreadsheet was developed for simulating multiserver models
(excelMultiServer.xls). The design of the template is based on the same ideas used in
the single-server case. However, the determination of the departure time is not as
straightforward and requires the use of VBA macros.

PROBLEM SET 19.5B

1. Using the input data in Section 19.5.1, run the Excel simulator for 10 arrivals and graph
the changes in facility utilization and queue length as a function of the simulation time.
Verify that the areas under the curves equal the sum of the service times and the sum
of the waiting times, respectively. ,

2. Simulate the M/M/1 model for 500 arrivals, given the arrival rate A = 4 customers per
hour and the service rate u = 6 departures per hour. Run 5 replications (by refreshing
the spreadsheet—pressing F9) and determine a 95% confidence interval for all the
measures of performance of the model. Compare the results with the steady-state
theoretical values of the M/M/1 model.

3. Television units arrive on a conveyor belt every 15 minutes for inspection at a single- - .
operator station. Detailed data for the inspection station are not available. However,
the operator estimates that it takes 10 minutes “on the average” to inspect a unit. Under
worst conditions, the inspection time does not exceed 13 minutes, and for certain units,
inspection time may be as low as 9 minutes. : .2 -

(a) Use the Excel simulator to simulate the inspection of 200 TV units.
(b) Based on 5 replications, estimate the average number of units awaiting inspection
and the average utilization of the inspection station. N

METHODS FOR GATHERING STATISTICAL OBSERVATIONS -

Simulation is a statistical experiment, and its output must be interpreted using proper

',‘ statistical inference tools (e.g., confidence intervals and hypothesis testing). To accom-
plish this task, a simulation experiment must satisfy three condition§:

1. Observations are drawn from stationary (identical) distributions. -
2. Observations are sampled from a normal population.
3. Observations are independent.

In a strict sense, the simulation experiment does not satisfy any of these conditions.
Nevertheless, we can ensure that these conditions remain statistically acceptable by
restricting the manner in which the observations are gathered. -,
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First, we consider the issue of stationary distributions. Simulation output is
a function of the length of the simulated period. The initial period produces erratic
behavior and is usually referred to as the transient or warm-up period. When the
output stabilizes, the system operates under steady state. Unfortunately, there is no
definitive way to predict the start point of steady state in advance. In general, a longer
simulation run has better chance of reaching steady state—meaning that the problem
is addressed by using a sufficiently large sample size.

Next, we consider the requirement that simulation observations are drawn from

“a normal population. This requirement is realized by using the central limit theorem
(see Section 14.4.4), which confirms that the distribution of the average of a sample is
asymptotically normal regardless of the parent population. The central limit theorem is
thus the main tool we use for satisfying the normal distribution assumption.

The third condition deals with the independence of the observations. In simulation,
an observation can be based on a single independent run, or by subdividing a single run
into subintervals each representing an observation. Each method has it advantages and
disadvantages. The first method alleviates the question of independence but has the
disadvantage of including the transient period in each observation. In the second
method, the effect of the transient period is not as pronounced, but it inherently worsens
the issue of independence.-As will be explained subsequently in this section, a possible
remedy calls for increasing the length of the simulation run.

The most common methods for collecting observations in simulation are

1. Subinterval method.
2. Replication method.
3. Regenerative (or cycles) method.

o The first two methods can be readily automated in all widely used simulation languages
(see Section 19.7). On the other hand, the third method, though it addresses directly the
issue of independence by seeking identical starting conditions for the different observa-
tions, may be difficult to implement in practice.

Sections 19.6.1 and 19.6.2 present the first two methods. Details of the third
method can be found in Law (2007).

19.6.1 Subinterval Method

Figure 19.9 illustrates the idea of the subinterval method. Suppose that the length of the

simulation run is 7' time units. The subinterval method first truncates an initial transient
period, and then subdivides the remainder of the simulation run into »n equal subintervals

(or batches). The average of a desired measure of performance (e.g., queue length or
“waiting time in queue) within each subinterval is then used to represent a single observa-

tion. Truncation of the initial transient period means that no statistical data are collected
during that period.

The advantage of the subinterval method is that the effect of the transient (non-
stationary) conditions is mitigated, particularly for the observations that are collected
toward the end of the simulation run. The disadvantage is that successive batches with
common boundary conditions are not necessarily independent. The problem can be
alleviated by increasing the time base for each observation.
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Transient period Batch1 | Batch2  Batchn

Measure of performance

Simulation time

FIGURE 19.9
Collecting simulation data using the subinterval method

Example 19.6-1

Figure 19.10 shows the change in queue length in a single-queue model as a function of the sim-
ulation time. The simulation run length is T = 35 hours, and the length of the transient period is
estimated to equal 5 hours. The time base for an observatlon is 6 hours, which produces n = 5
observation.

Let Q; represent the average queue length in batch i. Because the queue length is a time-
based varlable, we have

.—Q—t 7.=192""75

A V . : o ' [
TRk
where A; is the area under the queue length curve associated with batch (obser'vatiqn) i, and
t( = 6) is the time base per batch. ) P
The data in Figure 19.10 produce the following observations:

Observation i 1 2 3 4 5

A; 14 10 1n 6 15
o) 233 167 183 100 250

Sample mean = 1.87  Sample standard deviation = .59

FIGURE 19.10
Change in queue length with simulation time in Example 19.6-1

Queue L
length Q
Transiént| Batchl  Batch2  Batch3 Batch4  Batch5 I
perlod T { T 1 T
4 | —
3 |
2 |
1 I ,' A =14 II
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5 10

Simulation time
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The sample mean and variance can be used to compute a confidence interval, if desired.
The computation of the sample variance in Example 19.6-1 is based on the following familiar
formula:

This formula is only an approximation of the true standard deviation because it ignores the
effect of autocorrelation between the successive batches. The exact formula can be found in
Law (2007).

'Replication Method

In the repl1cat10n method, each observation is represented by an independent simula-
tion run in which the transient perlod Is truncated, as illustrated in Flgure 19.11. The
computation of the observation averages for each batch is the same as in the subinter-
val method. The only difference is that the standard variance formula is applicable
because the batches are not 1ndependent

The advantage of the replication method is that each simulation run is driven by
a distinct 0-1 random number stream, which yields statistically independent observa-
tions. The disadvantage is that each observation may be biased by the initial effect of
the transient conditions. Such a problem may be alleviated by making the run length
sufficiently large. ‘

PROBLEM SET 19.6A

1. In Example 19.6-1, use the subinterval method to compute the average waiting time
in the queue for those who must wait.

*2. In a simulation model, the subinterval method is used to compute batch averages. The tran-
sient period is estimated to be 100, and each batch has a time base of 100 time units as well.
Using the following data, which provide the waiting times for customers as a function of the
simulation time, estimate the 95% confidence interval for the mean waiting time.

FIGURE 19.11

Collecting simulation data using the replication method
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Time interval Waiting times
0-100 10,20,13,14,8,15,6,8 .
100-200 12,30,10,14,16
200-300 15,17,20,22
300400 10,20,30,15,25,31
400-500 15,17,20,14,13
500-600 25,30,15

SIMULATION LANGUAGES

Execution of simulation models entails two distinct types of computations: (1) file
manipulations that deal with the chronological storage and processing of model
events and (2) arithmetic and bookkeeping computations associated with generation
of random samples and collection of model statistics. The first type of computation
involves extensive logic in the development of list processing, and the second type
entails tedious and time-consuming calculations. The nature of these computations
makes the computer an essential tool for executing simulation models, and, in turn,
prompts the development of special computer 51mulat10n languages for performing
these computations conveniently and efficiently.
Available dlscrete s1mulat10n languages fall into two broad categorles
-4
1. Event scheduling

2. Process oriented
In event scheduling languages, the user details the actions associated with the
occurrence of each event, in much the same way they are given in.Example 19.5-1.
The main role of the language in this case is (1) automation of sampling from distri-
butions, (2) storage and retrieval of events in chronological order, and (3) collection
of model statistics. , ‘

Process-oriented languages use blocks or nodes that can be linked together to form

- anetwork that describes the movements of transactions or entities (i.e., customers) in the
system. For example, the three most prominent blocks/nodes in any process-simulation
language are a source from which transactions are created, a queue where they can wait
if necessary, and a facility where service is performed. Each of these blocks/nodes is
defined with all the information needed to drive the simulation automatically. For
example, once the interarrival time for the source is specified, a process-oriented lan-
guage automatically “knows” when arrival events will occur. In effect, each block/node of -
the model has standing instructions that define how and when transactlons are moved in
the simulation network.

Process-oriented languages are 1nternally driven by the same actions used in event-
scheduling languages. The difference is that these actions are automated to relieve the
user of the tedious computational and logical details. In a way, we can regard process-
oriented languages as being based on the input-output concept of the “black box” =
approach. This essentially means that process-oriented languages trade modeling
flexibility for simplicity and ease of use. -

A
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Event-scheduling languages (such as SIMSCRIPT, SLAM, and SIMAN) are out-
dated and are rarely used in practlce Recently, a new language called DEEDS (Elizandro
and Taha, 2008) is based on the novice approach of using Excel spreadsheet to drive event
scheduling. DEEDS allows the modeling flexibility of event-driven simulation languages
while achieving the intuitive nature of a process-oriented language.

'The predominant process-oriented commercial package is Arena. It uses exten-
sive user interface to simplify the process of creating a simulation model. It also
provides animation capabilities where changes in the system can be observed visually.
However, to an experienced simulation professional, these interfaces may appear to
reduce the development of a simulation model to a “slow-motion” pace. It is not sur-
prising that some users continue to prefer writing simulation models in higher-level

programming languages.

PROBLEM SET 19.7A2

1. Patrons arrive randomly at a three-clerk post office. The interarrival time is
exponential with mean 5 minutes. The time a clerk spends with a patron is exponential
with a mean of 10 minutes. All arriving patrons form one queue and wait for the first
available free clerk. Run a simulation model of the system for 480 mlnutes to
determine the following: ‘

(a) The average number of patrons waiting in the queue
(b) The average utilization of the clerks.

(c) Compare the simulation results with those of the M/M/c queuing model
(Chapter 18) and with the spreadsheet MultiServerSimulator.xls.

2. Television units arrive for inspection on a conveyor belt at the constant rate of 5 units
per hour. The inspection time takes between 10 and 15 minutes, uniformly distributed.
Past experience shows that 20% of inspected units must be adjusted and then sent back
for reinspection. The adjustment time is also uniformly distributed between 6 and
8 minutes. Run a simulation model for 480 minutes to compute the following:

(a) The average time a unit takes until it passes inspection.
(b) The average number of times a unit must be reinspected before it exits the system.

3. A mouse is trapped in a maze and desperately “wants out.” After trying between 1 and
3 minutes, uniformly distributed, there is a 30% chance that it will find the right path.
Otherwise, it will wander around aimlessly for between 2 and 3 minutes, uniformly
distributed, and eventually end up where it started, only to try once again. The mouse
can “try freedom” as many times as it pleases, but there is a limit to everything. With so
much energy expended in trying and retrying, the mouse is certain to expire if it does
not make it within a period that is normally distributed, with a mean of 10 minutes and
a standard deviation of 2 minutes. Write a simulation model to estimate the probability
that the mouse will be free. For the purpose of estimating the probability, assume that
100 mice will be processed by the model.

4. In the final stage of automobile manufacturing, a car moving on a transporter is situated
between two parallel workstations to allow work to be done on both the left and right

2Work these problems using a simulation language of your choice or a higher-order programming language.
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sides of the car simultaneously. The operation times for the left and right sides are
uniform between 15 and 20 minutes and 18 and 22 minutes, respectively. The transporter
arrives at the stations area every 20 minutes. Simulate the process for 480 minutes to
determine the utilization of the left and right stations.

5. Cars arrive at a one-bay car wash facility where the interarrival time is exponential,
with a mean of 10 minutes. Arriving cars line up in a single lane that can accommodate
at most five waiting cars. If the lane is full, newly arriving cars will go elsewhere. It takes
between 10 and 15 minutes, uniformly distributed, to wash a car. Simulate the system
for 960 minutes, and estimate the time a car spends in the facility.
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20.1

UNCONSTRAINED PROBLEMS

An extreme point of a function f(X) defines either a maximum or a minimum of the

function. Mathematically, a point Xy = (xJ,..., x9,..., x%) is a maximum if
Y.ap j

fXo + h) = f(Xo)
forallh = (hl, jre o> hy), where |h /| is sufficiently small for all j. In a similar man-
ner, Xpis a mlmmum 1f

f(Xo + h) = f(Xo)

Figure 20.1 illustrates the maxima and minima of a single-variable function f(x)
defined in the range a =< x = b. The pomts X1, X3, X3, X4, and x¢ are all extrema
of f(x), with x;, x3, and x4 as maxima and x, and x; as minima. The value
f(x6) = max{f(xy), f(x3), f(x6)} is a global or absolute maximum, and f(x;) and
f(x3) are local or relative maxima. Similarly, f(x4) is a local minimum and f(x,) is a
global minimum.

Although x; (in Figure 20.1) is a (local) maximum point, it differs from remaining
local maxima in that the value of f corresponding to at least one point in the neighbor-
hood of x; equals f(xy). In this respect, x; is a weak maximum, whereas x5 and xg are
strong maxima. In general, for h as defined earlier, X; is a weak maximum if
f(Xp + h) = f(X,) and a strong maximum if f(Xy + h) < f(X,).

In Figure 20.1, the first derivative (slope) of f equals zero at all extrema. This
property is also satisfied at inflection and saddle points, such as xs. If a point with zero
slope (gradient) is not an extremum (maximum or m1n1mum) then it must be an inflec-
tion or a saddle point.
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