:mes for the left and right sides are

1 22 minutes, respectively. The transporter
ilate the process for 430 minutes to

a single lane that can accommodate
arriving cars will go elsewhere. It takes
to wash a car. Simulate the system

in the facility.

O\FWCJT\ ons \Qegpmfﬁ\/

A Tohodudhon Gl ed
;-IWL/ A Taka_.

UNCONSTRAINED PROBLEMS

An eactrcme point of a function f(X) defines either a maximum or a minimum of the
function. Mathematically, a point Xy = (x},..., x},..., x3) is a maximum if
f(Xo + h) = f(Xo)

allh = (hy,..., hj,....h,),where || is sufficiently small for all j. In a similar man-
X is a minimum if

f(Xo +h) = f(Xo)

ure 20.1 illustrates the maxima and minima of a single-variable function f(x)
ed in the range a < x < b. The points Xy, X2, X3, ¥4, and Xg are all extrema
(x), with xj, x5, and xs as maxima and x, and x; as minima. The value
s) = max(f(x,), F(x), flxg)) is glpbal or absplute maximum, and f(x;) a_nd
4) are local or relative maxima. Similarly, f(xs) is a local minimum and f(xy) is a

al minimum. ximum point, it differs from remaining

. Eioure 20.1) is a (local) ma ers. :
‘ Ahtfo‘lg'h x;](ltnt:;gvalue of)f corresponding to at least one point in the neighbor-
maxima in tha s a weak maximum, whereas x3 and x, are

is respect, X1 1 : : :
: of x, equals f (x1)-In this resp efined earlier, Xo 1S a weak maximum if
rong maxima. In generd

], for h as d
cimumif f(Xo + B) < f (Xo)- _
+ h) < f(Xo)and a_stl;o(rllegrirszﬁve (slope) of f equals zero at all extrema. This
- In Figure 20.1, the first dett ints, such as xs. If a point with zero

| i ) 5 n and saddle pot ;i ,
operty is also satisfied at lt“ﬂ:::n(: (maximum Of minimum), then it must be an inflec-
t an extre

e (gradient) is n0
r a saddle point.

m
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7 The necessary condition Vf(Xp) =0 gives

0
2k =0
ax

0
—L=x3——2x2=0 4
[i 593

d
j‘=2+X2_2JC3=0
ax3

The solution of these simultaneous equations is

) X_ng
07 \2°33

* To determine the type of the stationary point, consider
FIGURE 20.1 &f ’f a*f
Examples of extreme points for a single-variable function —[;c’% 9x10X2 9x10X3
-2 0 0
& & &f
Hlx, = ! —]:2 =l o —2 1
. ax26x1 ax3 9Xx20X3 0 1 -2
20.1.1 Necessary and sufficient Conditions o , &f &f &f
This section develops the necessary and sufficient conditions for an n-variable function ‘ dx30xy  0x30%2 a3 | %

f(X) to have extrema. It is assumed that the first and second partial derivatives of f(X)

are continuous for all X. The principal minor determinants of Hix, have the values —2, 4, and —6, respectively. Thus, as

. .. 2 4 . .
shown in Section D.J3, H\x0 is negatwe-defmlte, and Xo = (5, 5 3) represents a maximum point.

)
-

—

Theorem 20.1-1 A necessary condition for X to be an extreme point of f(X). is that

Vi) =0 = In general, if Hix, is indefinite, X, must be a saddle point. For nonconclusive

cases, X may or may not be an extremum, and the sufficiency condition be.comes
rather involved, because higher-order terms in Taylor’s expansion must b.e cons1c!ered.
The sufficiency condition established by Theorem 20.1-2 applies to single-

variable functions as follows. Given that Yo is a stationary point, then

Because the necessary condition is also satisfied at inflection and saddle points, it
is more appropriate to refer to the points obtained from the solution of Vf(Xo) = 0as
: stationary points. The next theorem establishes the sufficiency conditions for X, tobe
L an extreme point.

~

@) yoisa maximum if " (¥0) < 0.

Theorem 20.1-2 A su icient condition for a stationary point Xg 10 be an extremuim is ; .. e on
i ' f P 0 I (i) Yo is a minimum it f" () > 0

that the Hessian matrix H evaluated at X satisfy the following conditions:

(i) H is positive definite if Xgis a minimum point.
(i) H is negative definite if Xg is a maximum point.

Example 20.1-1
Consider the function

_ 2 2 _ .2
F(x1, X, X3) = X1 T 2%3 T XaX3 Xx]— X3 — X3

It f"(3) = 0, higher-order derivatives must be investigated as the following theorem

requires.

Theorem 20.1-3  Given Yo, @ stationary point of f (»), if the first (n—1 derivatives are

zero and FD(ye) # 0, then

() Ifnis odd, ypis an inflection point. ‘ o
(i) Ifniseven, then yo is a minimum if F®(y) >0 and a maximum if f () < 0.
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o 1y gy
FIGURE 20.2 NS
Extreme points of f(¥) = y*and
g =y 0 y

Example 20.1-2
Figure 20.2 graphs the following two functions:
fo) =y
gy =y’
For f(y) = yLE) = 4y* = 0, which yields the stationary point Yo = 0. Now
1 =f'0= O =0, FO©0)=24>0

Hence, yo = 01is a3minimum point (see Figure 20.2). ]
Forg(y) = ¥ gy = 3y? =0, which yields yo = 0 as a stationary point. Also

g'©0) = g"0) g0 =6+0
Thus, yp = 0is an inflection point.

PROBLEM SET 20.1A

1. Determine the extreme points of the following functions.

x@) fx) =% +x

xp) flx)=x*+ X2 ' B

© fx) =4x*- x +5

@ f) = Gx — 27 @x =3

(@ f(x)=6x— 4x® +10
2. Determine the extreme points of the following functions.

@ fX) = X} + 33— 3%

o) fX)= 223 + x5 + g +6(x +x2F x3) + 2X1%2%3
3, Verify that the function

»

f(xl, X2, X3) = ZX1X2X3 - 4x1x3 - ZXZX3 + x% + X% + x% - 2x1 - 4x2 + 4X3
has the stationary points (0,3,1), (0,1 -1),(1,2,0),2
N . . - b b k] bl bl Yy * 1171 1and 27 3"——1 . =
ciency condition to identify the extreme points. ) ( »Use e sulf

4. Solve the following simultaneous equations by converting the system 0

lve t _ : a nonlinear
objective function with no constraints.

[Hint: min f2(x1, x,) occurs at f'(x1, x,) = 0]

20.1.2
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The Newton-Raphson Method

In general, the necessary condition Vf (x) # 0 may be highly nonlinear and, hence,

difficult to solve. The Newton-Raphson method is an jiterative algorithm for solving

simultaneous nonlinear equations.
Consider the simultaneous equations

f,-(X)=0,i=1,2,...,m .
Let X* be a given point. Then by Taylor’s expansion '
fl(X) ~ fl(xk) + Vfl(xk)(x - Xk)’ i= 1, 2,...,Mm
Thus, the original equations, filX) = 0,i =12 m, may be approximated as
filXe) + ViX&E ~ Xy =0i=14 2,...,MM
These equations may be written in matrix notation as
Ak + Bk(X - Xk) =0
If By is nonsingular, then
X=Xi B;—clA k
The idea of the method is to start from an initial point Xg,and then use the equation
above 10 determine a new point. The process may or may not converse depending on the
selection of the starting point. Convergence occurs when two successive points, X, and
X +1, 2T approximately equal (within specified acceptable tolerance).
A geometric interpretation of the method is illustrated by @ single-variable func-

tion in Figure 20.3.The relationship between Xi and x4+ fora single-variable function
f(x) reduces to

o £(xx)
Xt =T f)
X . .
The terms may be arranged as f'(xe) = }’f—(-k?)’ —meaning that Xjr1 18 determined
kT Xkl

from the slope of f(x) at Xk, where tan 8 = f'(xx), as the figure shows.

Figure 20.3 demonstrates that convergence is not always possibleflf the initial
point is a,the method will diverge. In general, it may be necessary to attempt 2 number
of initial points before convergence is achieved.

Example 20.1-3

To demonstrate the use of the Newton-Raphson method, consider the function
glx) = Bx ~ 2y (2x = 3’
To determine the stationary points of g(x),we need to solve

f(x) = gx)= 72x° = 234x% + 241x — 78 =0
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f)

Fxi)

atx,

Tangent to f(x)

Convergence point
(solution)

FIGURE 20.3
Tllustration of the iterative process in the Newton-Raphson method

Thus, for the Newton-Raphson method, we have
£'(x) = 216x% — 468x + 241

72x% — 234x% + 241x — 78
216x% ~ 468x + 24

Xpy1 = X —

Starting with x, = 10, the following table provides the successive iterations:

e . fx) . s
k f’(xk) k+1

0 10.000000 2.978923 © 7.032108

1 7.032108 1.976429 5.055679

2 5.055679 1.314367 3.741312

3 3.741312 0.871358 2.869995

4 2.869995 0.573547 2.296405 )
5 2.296405 0.371252 1.925154
6 1.925154 0.230702 1.694452

7 1.694452 0.128999 1.565453

8 1.565453 0.054156 1.511296

9 1.511296 0108641 1.500432
10 1.500432 .00043131 1.500001

Xk+1

20.2

20.2.1

20.2 Constrained Problems. 717

The method converges to x = 1.5. Actually, f(x) has three stationary points at
x = % , X = % ,and x = % . The remaining two points can be found by attempting different
values for initial x,. In fact, x; = .5 and xo = 1 should yield the missing stationary points (try it!).

Excel Moment

Template excelNewtonRaphsori.xls can be used to solve any single-variablé equation. It requires

entering %in cell C3. For Example 20.1-3, we enter
=(72*A3/3—234*A3%2+241*A3—78)/(216*A3"2~468%*A3+241)

The variable x is replaced with A3.The template allows setting a tolerance limit A, which specifies
the allowable difference between x; and x4 that signals the termination of the iterations. You are
encouraged to use different initial points, xo, to get a feel of how the method works.

'PROBLEM SET 20.1B

1. Use NewtonRaphson.xls to solve Problem 1(c}), Set 20.1a.
2. Solve Problem 2(b), Set 20.1a, by the Newton-Raphson method.

CONSTRAINED PROBLEMS

This section deals with the optimization of constrained continuous functions. Section
20.2.1 introduces the case of equality constraints, and Section 20.2.2 deals with inequality
constraints. The presentation in Section 20.2.1 is covered for the most part in Beightler
and Associates (1979, pp. 45-55).

Equality Constraints

This section presents two methods: the Jacobian and the Lagrangean. The Lagrangean
method can be developed logically from the Jacobian. This relationship provides an
interesting economic interpretation of the Lagrangean method.

Constrained derivatives (Jacobian) method. Consider the problem .
Minimizez = f(X)
subject to
gX)=10
where

X = (X1, X0,y Xp)

g= (gl’ 82>+ gm)T

l



|
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The functions f(X) and g(X),{ = 1,2, ..., m, are twice continuously differentiable.
The idea of using constrained derivatives is to develop a closed-form expression for
the first partial derivatives of f (X) at all points satisfying g(X) = 0. The corresponding
stationary points are identified as the points at which these partial derivatives vanish. The
sufficiency conditions introduced in Section 20.1 can then be used to check the identity of
stationary points. - . o |
To clarify the proposed concept, consider f (x1, x,) illustrated in Figure 20.4. This
function is to be minimized subject to the constraint

gi(x1, %) =x, —b=0

where b is a constant. From Figure 204, the curve designated by the three points A4, B,
and C represents the values of f (x1, x,) satisfying the given constraint. The constrained
derivatives method defines the gradient of f(x;, x,) at any point on the curve ABC. Point B
at which the constrained derivative vanishes is a stationary point for the constrained
problem. .

The method is now developed mathematically. By Taylor’s theorem, for X + AX

in the feasible neighborhood of X, we have :

fX + AX) - f(X) = Vf(‘X)AX‘ + O(Ax)

FIGURE 20.4 F(x1, %)
Demonstration of the idea of the
Jacobian method

fx, %)

Constrained B
curve

Constrained |
minimum

s x
\< s
s
Constraint g(X) =x, —b=0
Xy ‘
X1
Xy = b
Contour of constrained
optimum objective value

X2

—4A¥—_\I'Ilvvlf“
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and

g(X + AX) — g(X) = Vg(X)AX + O(Ax?)
As Ax;— 0, the equations reduce to 7
af(X) = Vf(X)oX
and
9g(X) = Vg(X)aX
For feasibility, we must have g(X) = 0, 9g(X) = 0. Hence
. f(X) - VA(X)aX =0
Vg(X)oX-=0

This gives (m + 1) equations in (n + 1) unknowns, 3f(X) and 8X. Note that af(X) is a
dependent variable whose value is determined once dX is known. This means that, in
effect, we have m equations in n unknowns. 7

If m > n, at least (m — n) equations are redundant. Eliminating redundancy,
the system reduces to m = n. If m = n, the solution is X = 0, and X has no feasible
neighborhood, which means that the solution space consists of one point only. The re-

maining case (m < n) requires further elaboration. il

Define
X =(Y,Z)

such that

Y= (yl’yZ""’ym)’Z = (ZI’ZZ""’Zn—m)

The vectors Y and Z represent the dependent and independent variables, respectively.
Rewriting the gradient vectors of f and g in terms of Y and Z, we get

VI(Y,Z) = (Vvf, Vzf) il

Vg(Y,Z) = (Vyg, Vz8)

Define
Vygi
J=Vyg=1|
Vng
Vzgi
C=Vzg= :
Vng

J,. < m 18 called the Jacobian matrix and C,,«,,-,, the control matrix. The Jacobian J is
assumed nonsingular. This is always possible because the given m equations are inde-
pendent by definition. The components of the vector Y must thus be selected such that
J is nonsingular. :

%‘:
| |
|

L
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The original set of equations in 3f(X) and X may be written as
| 8f (Y, Z) = VyfoY + VyfoZ
and |
JoY = -CoZ
Given J is nonsingular, it follows that
Y = -J'Coz
Substituting for 9Y in the equation for 9f(X) gives df as a function of dZ —that is,
| of(Y,Z) = (Vof — VyfIC)Z )

From this equation, the constrained derivative with respect to the independent vector Z
is given by
3.f(Y, Z)
Vf = = Vof — Vny_lc
0.Z

where V.f is the constrained gradient vector of f with respect to Z. Thus, V.f(Y, Z)
must be null at the stationary points.

The sufficiency conditions are similar to those developed in Section 20.1. The
(constrained) Hessian matrix corresponds to the independent vector Z, and the
elements of the Hessian matrix must be the constrained second derivatives.

Example 20.2-1
Consider the following problem:
F(X) = x1 + 3x% + 5x,43
gi(X) =xx;3 + 26, +x3 -~ 11 =0

eX)=x}+2xx,+x5-14=0

Given the feasible point X° = (1, 2, 3), we wish to study the variation in f(E3.f) in the feasible

neighborhood of X°.
Let
Y =(x,x) and Z =x, R
Thus,
Vyf = (:—i %) = (2x; + 5x3, 10x;x3)
Vzf = EL = 6x,

dxy
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J = ax; dx3 _ (X3 X1 )

f_gg f& 2)C1 + 2)C2 2)(.‘3

axl ax3 :

% :
C= ax2 | <2x2 + 2)

o |\ 2n

ax;

Suppose that we need to estimate d.f in the feasible neighborhood of the feasible point
Xop = (1,2, 3), given a small change dx, = .01 in the independent variable x,. We have

o= G- -5
6 6/ \2 -£ /2 -2.50

Hence, the incremental value of constrained f is given as

2.83

3cf = (Vaf — VyfI7'C)IZ = (6(2) - (47, 30)(—2.50

)>GX2 = —46016.?6'2

By specifying the value of dx, for the independent variable x,, feasible values of dx;and dx, are
determined for the dependent variables x; and x; using the formula

Y = —JICoZ

Thus, forax, = .01,

(om) = e = ()
We now compare the value of d.f as computed above with the difference
fXy + 0X) — f(Xy), given dx, = .01.
Xy + X = (1 —.0283,2 + .01,3 + .025) = (.9717,2.01, 3.025)
This yields
f(Xy) =38, f(Xy + 9X) = 57.523
or
fXo + X)) — f(Xg) = —.477

The amount —.477 '(:bmpares favorably with a.f = —46.01dx, = —.4601. The difference
between the two values is the result of the linear approximation in computing d.f at X,.
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PROBLEM SET 20.2A

1. Consider Example 20.2-1.

(a) Compute o.f by the two methods presented in the example, using dx, = .001 instead
of dx, = .01. Does the effect of linear approximation become more negligible with
the decrease in the value of 9x,?

*(b) Specify a relationship among the elements of X = (8xy, 9x,, 3x3) at the feasible
point X, = (1, 2, 3) that will keep the point X, + X feasible.

(¢) Y = (x3, x3) and Z = x,, what is the value of dx; that will produce the same value
of d.f given in the example?

Example 20.2-2 - ®
This example illustrates the use of constrained derivatives. Consider the problem
Minimize f(X) = x? + x3 + x}
subject to
s(X)="x1+ x+3x3-2=0
) oX)=5x+2x+ x3-5=0
We determine the constrained extreme points as follows. Let

4Y'= (xl, XZ) and Z = X3

Thus,
Vyf = (:_)]:1, :_J];) = (2x1,2x3), Vo f = % = 2x3
(0 (e
Hence,
V.f = :‘i = 2x; ~ (2xy, Zx?)(—g _i)(i)

= 13_OX1 - 23_8XZ + 2)(,'3

'The equations for determining the stationary points are thus given as

V=0
gaX)=0 i
&X)=0
or
10 -28 6\/x\ [0
1 1 3llx]=]|2
5 2 1 X3 5

The solution is

X, ~ (.81, .35, 28)
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The identity of this stationary point is checked using the sufficiency condition. Given that x;
is the independent variable, it follows from V_f that

dx1
a2 d d dx;
G E(ﬂ) _ @(ﬂ) ta= (&,_ﬁ) e |,
x5 3 \dx, 3 \dx; 37 3/} dx, .
dX3
From the Jacobian method,
dx1
dxy __ 1l — %
e, | = J7C = (_%
dX3
Py
Substitution gives 3 CfZ = ? > 0. Hence, X, is the minimum point.
X3

Sensitivity analysis in the Jacobian method. The Jacobian method can be used to
study the effect of small changes in the right-hand side of the constraints on the optimal
value of f. Specifically, what is the effect of changing g(X) = 0 to g(X) = ag; on the
optimal value of f? This type of investigation is called sensitivity analysis and is similar
to that carried out in linear programming (see Chapters 3 and 4). However, sensitivity
analysis in nonlinear programming is valid only in the small neighborhood of the
extreme point. The development will be helpful in studying the Lagrangean method.
We have shown previously that

Af(Y,Z) = VyfoY + Vi foZ

ag = JoY + CiZ
Given dg # 0, then

Y = Jlog — I'CozZ
Substituting in the equation for af (Y, Z) gives
af (Y,Z) = VyfI log + V.foZ
where
V.f = Vif — VyfIIC

as defined previously. The expression for df (Y, Z) can be used to study variation in f in
the feasible neighborhood of a feasible point X, resulting from small changes dg and 3 Z.

At the extreme (indeed, any stationary) point X, = (Yy, Zg), the constrained
gradient V_.f must vanish. Thus ’ '

af (Yo, Zo) = Vy, f I 9g(Yo, Zo)

or

of 4
28 Vy, fJ
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The effect of the small change dg on the optimum value of f can be studied by evaluating

the rate of change of f with respect to g. These rates are usually referred to as:

- sensitivity coefficients.

Example 20.2-3 -

Consider the same problem of Example 20.2-2. The optimum point is given by

XO = (xm, X025 x03) = (81, 35, 28) Given Y() = (X()l, XQQ), then

af of
Vv f = (8x1 o ) = (2xg1, 2x00) = (1.62,.70)
Consequently, ]
3 < vyt = 2hy
<8g1 ) VYof 9= (1-62’,7) Y (.0876, 3067)

This means that for dg; = 1, f will increase approximately by .0867. Sxmllarly, forag, = 1 , fowill
increase approximately by .3067.

PROBLEM SET 20.2B

1. Suppose that Example 20.2-2 is solved in the following manner. First, use the constraints
to express x; and x, in terms of x3; then use the resulting equations to express the
objective function in terms of x; only. By taking the derivative of the new objective
function with respect to x3, we can determine the points of maxima and minima. ..

(a) Would the derivative of the new objective function (expressed in terms of x3) be
different from that obtained by the Jacobian method?

(b) How does the suggested procedure differ from the Jacobian method? :
2. Apply the Jacobian method to Example 20.2-1 by selecting Y = (x5, x3) and Z = (x;).
*3, Solve by the Jacobian method:

n
Minimize f(X) = >, x?
=5
subject to
n
Hxi =C
i=1

where Cisa pesitive constant. Suppose that the right-hand side of the constraint is
changed to C + 6, where & is a small positive quantity. Find the corresponding change in
the optimal value of f.

4. Solve by the Jacobian method:
Minimize f(X) = 5x7 + x3 + 2xx,
subject to

g(X) = X1Xy — 10=0
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(a) Find the change in the optimal value of f (X) if the constraint is replaced by
X1Xy — 9.99 = 0.

(b) Find the change in value of f(X) in the nexghborhood of the feasible point (2 5),
given that x;x, = 9.99 and 9x; = .01.

5. Consider the problem: )
Maximize f(X) = x7 + 42x% + 1023 + 5x1%,
subject to
aX)=x +x3+3xx;-5=0
oX)=x}+5xx, +x3-7=0

Apply the Jacobian method to find 8f(X) in the neighborhood of the feasible point (1,1, 1).
Assume that this neighborhood is specified by ag; = —.01, dg, = .02, and dx; = .01.

6. Consider the problem
Minimize f(X) = x7 + x} + x} + x}
subject to
&aX) =x; +2x, +3x3+ 5x, —10=0
oX) = x + 2x2 + S5x3 + 6x4 - 15 =0

(a) Show that by selecting x3 and x, as independent variables, the Jacobian method fails
to provide a solution and, state the reason.

*(b) Solve the problem using x; and x; as independent variables, and apply the
sufficiency condition to determine the type of the resulting stationary point.

(¢) Determine the sensitivity coefficients, given the solution in (b).

Lagrangean method. In the Jacobian method, let the vector A represent the
sensitivity coefficients—that is

af
A =Vy] P
Thus,
af — Aog=0

This equation satisfies the necessary conditions for stationary points because @ is

computed such that V.f = 0. A more convenient form for presenting these equations
is to take their partial derivatives with respect to all x;. This yields

9
Z(f-Ag) =0, j=1,2,...,n
ax]_(f g) j |

The resulting equations together with the constraint equations g(X) = 0 yield the
feasible values of X and A that satisfy the necessary conditions for stationary points.
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The given procedure defines the Lagrangean method for identifying the stationary
points of optimization problems with equality constraints. Let

LX, M) = f(X) = 2g(X)

The function L is called the Lagrangean function and the elements of the vector A con- .

stitute the Lagrange multipliers. By definition, these multipliers have the same inter-
pretation as the sensitivity coefficients of the Jacobian method
The equations

AL _ oL _
A T aX

give the. necessary conditions for determining stationary points of f(X) subject to
g(X) = 0. Sufficiency conditions for the Lagrangean method exist, but they are generally

computationally difficult.

Example 20.2-4
Consider the problem of Example 20.2-2. The Lagrangean function is ‘

LX,A) =xt+x3 +x3 — M(xy +xp + 3x3 = 2) — M(5x; +2x5 + x3 — 5)

This yields the following necessary conditions:

aL
a—xl=2xl—‘/\1“5/\2=0
L
a;=2x2—/\1—2/\2=0
o
£=2.X'3—3)t1—/\2=0
L .
E=—(x1+x2+3x3—2)=0 '
oL
E— —(5x1+2x2+x3—5)=0
The solution to these simultaneous equations yields !

Xo = (%1, x5, X3) = (.8043, 3478, 2826)
A = (A, Ap) = (.0870,.3043)

This solution combines the results of Examples 20.2-2 and 20.2-3. The values of the Lagrange
multipliers, as given by the vector A, equal the sensitivity coefficients obtained in Example 20.2-3.
The result shows that these coefficients are independent of the specific choice of the dependent
vector Y in the Jacobian method. :
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PROBLEM SET 20.2C

1. Solve the following linear programming problem by both the Jacobian and the
Lagrangean methods:

Maximize f(X) = 5x; + 3x;

subject to ‘ .
gl(X)': x1+2x2+x3 -6=0
o(X) =3x + x +x,—9=0

X1, Xp, X3, X4 = 0

*2. Find the optimal solution to the problem
Minimize f(X) = x} + 2x3 + 10x}

subject to
aX)=x +x3+x-5=0
X)) =x+5x,+x3-7=0

Suppose that g(X) = .01 and g(X) = .02.Find the corresponding change in the optimal ‘
value of f(X).

3. Solve Problem 6, Set 20.2b, by the Lagrangean method, and verify that the values of the
Lagrange multipliers are the same as the sensitivity coefficients obtained in Problem 6,

Set 20.2b.

d

20.2.2 Inequality Constraints—Karush-Kuhn-Tucker (KKT) Conditions'

This section extends the Lagrangean method to problems with inequality constraints. The }
main contribution of the section is the development of the general Karush-Kuhn-Tucker ;
(KKT) necessary conditions for determining the stationary points. These conditions are
also sufficient under certain rules that will be stated later.

Consider the problem

Maximize z = f(X)
subject to
gX) =0

The inequality constraints may be converted into equations by using nonnegative slack
variables. Let S?(= 0) be the slack quantity added to the ith constraint g(X) = 0and

define
S = (51, 85,..., ST, 8 = (8, S2,..., 827

1y, Karush was the first to develop the KKT conditions in 1939 as part of an M.S. thesis at the University of R
Chicago. The same conditions were developed independently in 1951 by W. Kuhn and A. Tucker.

S TI12 10t 2CR0 0008




728

Chapter 20 Classical Optimization Theory

where m is the total number of inequality constraints. The Lagrangean function is thus
given by

L(X,8, 1) = f(X) - A[g(X) + §]

Given the constraints g(X) = 0, a necessary condition for optimality is that A be non-
negative (nonpositive) for maximization (minimization) problems. This result is justified
by noting that the vector A measures the rate of variation of f with respect to g—that is,

of
og
In the maximization case, as the right-hand side of the constraint g(X) < 0 increases from
0 to the vector dg, the solution space becomes less constrained and hence f cannot
decrease, meaning that A = 0. Similarly for minimization, as the right-hand side of the
constraints increases, f cannot increase, which implies that A < 0. If the constraints are
equalities, that is, g(X)= 0, then A becomes unrestricted in sign (see Problem 2, Set 20.2d).
The restrictions on A hold as part of the KKT necessary conditions. The remaining
conditions will now be developed.
Taking the partial derivatives of L with respect to X, S, and A, we obtain

aL |

——aX—Vf(X) AVgX) =0
oL
—=-2X5=0,i=1,2,...
3s, 2248, =0,i=1,2,....,m
oL

_—= - -|— 2=

= —(e(X) + ) = 0

The second set of equations rpv_eals the following results:

1. If A; # 0, then $? = 0. This result means that the corresponding resource is
scarce (i.e., consumed completely). ;

. If 2 > 0, then A; = 0. This means resource i is not scarce and, hence, it has no
effect on the value of f(i.e., A; = 32 = 0).
From the second and third sets of equations, we obtain
)\,-gi(X)=0i=12...m R

This new condition essentially repeats the foregoing argument, because if
A > 0,8(X) = 0or §? = 0;and if g(X) < 0,5? > 0, and \; = 0.
The KKT necessary conditions for maximization problem are summarized as follows:

A=0

V/(X) ~ AVg(X) = 0
AgX) =0, i=1,2,....m

gX)=0

20.2 . Constrained Problems 729

TABLE 20.1 Sufficiency of the KKT Conditions

Required conditions

Sense of
optimization Objective function Solution space
Maximization Concave * Convex set .
Minimization Convex . Convex set

These conditions apply to the minimization case as well, except that A must be non-
positive (verify!). In both maximization and minimization, the Lagrange multipliers
corresponding to equality constraints are unrestricted in sign.

Sufficiency of the KKT conditions. The KKT necessary conditions are also sufficient
if the objective function and the solution space satisfy the conditions in Table 20.1.

It is simpler to verify that a function is convex or concave than to prove that a
solution space is a convex set. For this reason, we provide a subset of sufficiency condi-
tions, which, though not as general as the ones in Table 20.1, are easier to apply in
practice. To provide these conditions, we define the generalized nonlinear problems as

Maximize or minimize z = f(X)

subject to
gl(x) = O, i
g(X)=0, i=p+1,....,m

1,2,...,r
r+1,...,p

L(X,$,A) = f(X) - éAi[gi(X) + 8- S MeX) - - 3 ag(X

i=r+1 i=p+1

The parameter A; is the Lagrange multiplier associated with constraint 7. The conditions
for establishing the sufficiency of the KKT conditions are summarized in Table 20.2.

TABLE 20.2 Subset of KKT Sufficient Conditions

Required conditions

"Sense of

optimization fx) gX) A
Convex =0 (1=i= r')

Maximization Concave Concave = 0 (r+1= l.s p)
Linear Unrestricted (p+1=<i=m)
Convex =0 (I=i= r)

Minimization Convex Concave = 0 (r+1= I.S p)
Linear Unrestricted (ptl=i=m)
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The conditions in Table 20.2 are a subset of the conditions in Table 20.1 because
a solution space can be convex without satisfying the conditions in Table 20.2.

Table 20.2 is valid because the given conditions yield a concave Lagrangean function
L(X, S, A) in case of maximization and a convex L(X, S, A) in case of minimization. This
result is verified by noticing that if g;(x) is convex, then A;g;(x) is convex if A; = 0 and con-
cave if A; = 0. Similar interpretations can be established for all the remaining conditions.
Observe that a linear function is both convex and concave. Also, if a function f is concave,

then (—f) is convex, and vice versa.

-20.2 Constrained Problems 731

M2 —x) =0
" Asx3 =0
2x1+ x, =5
x1tx3=2

x1217x222ax3.20 L ‘

The solution is x; = 1, %, =2,x3 =0, Ay = X, = A5 = 0,43 = —2,As = —4. Because

Example 20.2-5
Consider the following minimization problem:
Minimize f(X) = x7 + x} +'x3 -
subject to
aX)=2x;+x-5=<0
&X)= x+x-2=<0
sX)=1 -x =0
aX)=2 -x =0
&(X)=  -—x. =0

This is a minimization problem, hence A = 0. The KKT conditions are thus given as._

(/\1’ )‘2’ A37 A4’ /\5) =0

2 1 0
1 0 1
(2x1’ 2x2: 2x3) - (/\1’ )\2, AS, )\4’ /\5) -1 0 0f[=0
0 -1 0 ;
0 0 -1
ML =X =+ =Asgs =0
gX)=0

These conditions reduce to

Ap Az A3, A, A5 =0

2xy = 20 — Ay + A3 =0
2%, — A+ A =0
2x3— A+ A5=0
M2x+x,—-5)=0
Ay +x3-2)=0
M1 —x)=0

both £(X) and the solution space g(X) =< 0 are convex, L(X, S, A) must be convex, and the
resulting stationary point yields a global constrained minimum. The KKT conditions are central

to the development of the nonlinear programming algorithms in Chapter 21.

PROBLEM SET 20.2D

1. Consider the problem:
Maximize f(X)
subject to
gX)=0
Show that the KKT conditions are the same as in Section 20.2.2, except that A = 0.
2. Consider the following problem:

Maximize f(X)

subject to
g(X)=0
Show that the KKT conditions are
Vf(X) — AVg(X) = 0
gX)=0
A unrestricted in sign
3. Write the KKT necessary conditions for the following problems.

(a) Maximize f(X) = x] — x3 + x1%3
subject to
X +x3+x3=5
5x3 —x3—x3=2

X1, %2, %32 0
(b) Minimize f(X) = x} + x5 + 5x1%,%3
subject to
d-x3+x3=10

B+ x5+ 4x3 =20

i)
tHERE I
i

I 1 l
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4, Consider the problem
Maximize f(X)
subject to
' g(X) =0

Given f(X) is concave and g(X)(i = 1,2,..., m) is a linear function, show that the KKT
necessary conditions are also sufficient. Is th1s result true if g(X) is a convex nonlinear
function for ali i? Why?

5. Consider the problem
Maximize f(X) -
su_bjcét to
&i(X) = 0,&(X) = 0, 8(X) =

Develop the KKT conditions, and give the stipulations under which the conditions are
sufficient. )
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21,1 UNCONSTRAINED ALGORITHMS

This section presents two types of algorithms for the unconstrained problem: direct
search and gradient.

21.1.1 Direct Search Method

Direct search methods apply primarily to strictly unimodal single-variable functions.
Although the case may appear trivial, Section 21.1.2 shows that optimization of
single-variable functions is key in the development of the more general multivariable
algorithm, o

The idea of direct search methods is to identify the interval of uncertainty
known to include the optimum solution point. The procedure locates the optimum by
iteratively narrowing the interval of uncertainty to a desired level of accuracy.

Two closely related search algorithms are presented in this section: dichotomous
and golden section. Both algorithms seek the maximization of a unimodal function
f(x) over the interval @ = x = b that includes the optimum point x*. The two methods
start with the initial interval of uncertainty Iy = (a, b). '

Generalstepi. LetI;,_; = (x;, xg) be the current interval of unéertainty (atiteration 0,
x; = a and xg = b). The following table shows how x; and x, are determined:

Dichotomous method Golden section method
1 V5 -1
X =3(p+x—A) x=xp- (—2 )(XR_XL)
V5 -
Xy = 3(xp + xp + A) x2=xL+( 1)(xR_xL)

The selection of x; and x, guarantees that x; < x; < x; < xp.
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