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CHAPTER 7

Advanced Linear
Programming

Chapter Guide. This chapter presents the mathematical foundation of linear program-
ming and duality theory. The presentation allows the development of a number of com-
putationally efficient algorithms, including the revised simplex method, bounded

point algorithm.

The material in this chapter relies heavily on the use of matrix algebra. Appendix D
on the CD provides a review of matrices,

The three topics that should receive special attention in this chapter are the re-
vised simplex method, the bounded-variables algorithm, and parametric programming.
The use of matrix manipulations in the revised stmplex method allows a better control
over machine roundoff error, an CVer-present problem in the row operations method of
Chapter 3. The bounded variables algorithm is used prominently with the integer pro-
gramming branch-and-bound algorithm (Chapter 9). Parametric programming adds a
dynamic dimension to the LP model that allows the determination of the changes in
the optimum solution resulting from making continuous changes in the parameters of
the model.

The task of understanding the details of the revised simplex method, bounded
variables, decomposition, and parametric programming is improved by summarizing
the results of matrix manipulations in the casy-to-read simplex tableau format of
Chapter 3. Although matrix manipulations make the algorithms appear different, the
theory is exactly the same as in Chapter 3.

This chapter includes 1 real-life application, 8 solved examples, 58 end-of-section
problems, and 4 end-of-chapter comprehensive problems. The comprehensive prob-

lems are in Appendix E on the CD. ‘The AMPL/Excel/Solver/TORA programs are in
folder ch7Files.
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298 Chapter 7 Advanced Linear Programming

Real-Life Application—Optimal Ship Routing and Personnel Assignment
for Naval Recruitment in Thailand

Thailand Navy recruits are drafted four times a year. A draftee reports to one of 34
local centers and is then transported by bus to one of four navy branch bases. From
there, recruits are transported to the main naval base by ship. The docking facilities at
the branch bases may restrict the type of ship that can visit each base. Branch bases
have limited capacities but, as a whole, the four bases have sufficient capacity to ac-
commodate all the draftees. During the summer of 1983, a total of 2929 draftees were
transported from the drafting centers to the four branch bases and eventually to the
main base. The problem deals with determining the optimal schedule for transporting
the draftees, first from the drafting centers to the branch bases and then from the
branch bases to the main base. The study uses a combination of linear and integer pro-
gramming. The details are given in Case 5, Chapter 24 on the CD.

7.1 SIMPLEX METHOD FUNDAMENTALS

In linear programming, the feasible solution space is said to form a convex set if the
line segment joining any two distinct feasible points also falls in the set. An extreme
point of the convex set is a feasible point that cannot lie on a line segment joining any
two distinct feasible points in the set. Actually, extreme points are the same as corner
point, the more apt name used in Chapters 2, 3, and 4.

Figure 7.1 illustrates two sets. Set (a), which is typical of the solution space of a
linear program, is convex (with six extreme points), whereas set (b) is nonconvex.

In the graphical LP solution given in Section 2.3, we demonstrated that the opti-
murm solution can always be associated with a feasible extreme (corner) point of the
solution space. This result makes sense intuitively, because in the LP solution space
every feasible point can be determined as a function of its feasible extreme points. For
example, in convex set (a) of Figure 7.1, a feasible point X can be expressed as a convex
combination of its extreme points X, X,, X3, X4, X5, and X using

X = a;X| + apXy + o3X3 + a, Xy + asX5 + agXg
where
ay taytazta;tata=1
o, =0,i=1,2,...,6

This observation shows that extreme points provide all that is needed to define the so-
lution space completely.

FIGURE 7.1

Exampies of a convex and a nonconvex set




LT« ]

7.1 Simplex Method Fundamentals 299

Example 7.1-1
Show that the following set is convex:
C={(x,x)x =2, x, = 3,5, =0, x = 0}
Let X; = {x}, x5} and X, = {x{, x5} be any two distinct points in C. If C is convex, then
X = (x, %) = o X; + X, @+ ay =1, e, = 0, must also be in C. To show that this is
Lrue, we need to show that all the constraints of C are satisfied by the line segment X that is,
Xy = alx'l + az.l'i’ = a1(2) + a2(2) = 2

Xy = ayxy + apxy = @ (3) + a3) =3

Thus,x; = 2and x, = 3. Additionally, the nonnegativity conditions are satisfied because oy and a,
are nonnegative,

PROBLEM SET 7.1A
1. Show that the set @ = {x), x,lx; + x, =< 1, %1 = 0,x; = 0} is convex. Is the nonnegativ-
ity condition essential for the proof?

*2. Show that theset @ = {x;, xylx; = lorx, = 2} is not convex.
3. Determine graphically the extreme points of the following convex set:

Q={r,nly+xs2x = 0, x, = 0}

Show that the entire feasible solution space can be determined as a convex combination

of its extreme points. Hence conclude that any convex (bounded) solution space is totally
defined once its extreme points are knowr.

4. In the solution space in Figure 7.2 (drawn to scale), express the interior point (3,1) asa

convex combination of the extreme points A, B, C, and D with each extreme point carry-
ing a strictly positive weight.

X5 FIGURE 7.2
Solution space for Problem 4,Set 7.1a
6

(37 1)

1
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from Extreme Points to Basic Solutions

problem in equation form (see Section 3.1)
-vector representing the variables, A as an
oefficients, b as a column vector repre-
ting the objective-function

It is convenient to express the general LP
using matrix notation. Define X as an n
(m X n)-matrix representing the constraint ¢
senting the right-hand side, and C as an n-vector represen

coefficients. The LP is then written as
Maximize or minimize z = CX

subject to
AX =5

X=0

Using the format of Chapter 3 (see also Figure 4.1), the rightmost m columns of A
always can be made to represent the identity matrix I through proper arrangements of
the slack/artificial variables associated with the starting basic solution.

A basic solution of AX = b is determined by setting n — m variables equal to
zero, and then solving the resulting m equations in the remaining m unknowns, provided
that the resulting solution is unique. Given this definition, the theory of linear program-
ming establishes the following result between the geometric definition of extreme

points and the algebraic definition of basic solutions:
Extreme points of {X|AX = b} = Basic solutions of AX = b

reme points of the LP solution space are totally
em AX = b, and vice versa. Thus, we conclude
ain all the information we need to determine
hermore, if we impose the nonnegativity
solution is confined to the feasible basic

The relationship means that the ext
defined by the basic solutions of the syst
that the basic solutions of AX = b cont
the optimum solution of the LP problem. Furt
restriction, X = 0, the search for the optimum
solutions only.

To formalize the definition of a basic solutio

in vector form as follows:

n, the system AX = bcanbe expressed

DPx;=b
j=1

set of m vectors is said to form a basis, B, if,
ly independent. In this case, the matrix B 1s
sociated with the vectors of nonsingular

The vector P; is the jth column of A.A sub
and only if, the selected m vectors are linear
nonsingular. If X is the set of m variables as
B, then Xz must be a basic solution. In this case, we have

BXB =b
Given the inverse B! of B, we then get the corresponding basic solution as
X =Bb

I B~b = 0, then X is feasible. The definition assumes that the remaining n — m var-
ables are nonbasic at zero level.
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The previous result shows that in a system of m equations and # unknowns, the
maximum number of (feasible and infeasible) basic solutions is given by

( n) _ n!
m m!{n — m)!
Determine and classify (as feasible and infeasible) all the basic solutions of the following system

of equations.
2 2 217 \2
x

3

Example 7.1-2

The following table summarizes the results. The inverse of B is determined by using one of
the methods in Section D.2.7 on the CD.

B BX;=bhb Solution Status

N (N N B R

(P, Ps) (Not a basis) o . —
e G0 ©C D) e

We can also investigate the problem by expressing it in vector form as follows:

G (B)e e {5)o= ()

Each of P, P,, P;, and b is a two-dimensional vector, which can be represented generically as
(ay, a,)". Figure 7.3 graphs these vectors on the (a;, a;)-plane. For example, forb = (4,2)7, a2, = 4
and a;, = 2.

a, FIGURE 7.3
Vector representation of LP solution space
3 |
) SEE b
1 —
I f | I I a
-1 1 2 3 4
1 —
P; 2 P,
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Because we are dealing with two equations (m = 2), a basis must include exactly two vec-
tors, selected from among Py, P, and Py. From Figure 7.3, the matrices (P, P,) and (P,, P3) form
bases because their associated vectors are independent. In the matrix (Py, P3) the two vectors are
dependent, and hence do not constitute a basis.

Algebraically, a (square) matrix forms a basis if its determinant is not zero (see Section
D.2.5). The following computations show that the combinations (P, Py) and (P, P3) are bases,
and the combination (Py, Py) is not.

del(Pl, P?_) = det(l

) _z)=(1><—2)—(2x3)=—8¢0

det(Py, P;) = det(_3

5 :;)=(3><—2)—(—2x—1)=—8¢0

det(Py, P3) = det(; :;) =(1x-2)-2x-1)= 0

We can take advantage of the vector representation of the problem to discuss how the starting
solution of the simplex method is determined. From the vector representation in Figure 7.3, the
basis B = (P;, ;) can be used to start the simplex iterations, because it produces the basic feasi-
ble solution Xp = (x1, x,)7. However, in the absence of the vector representation, the only
available course of action is to try all possible bases (3 in this example, as shown above). The dif-
ficulty with using trial and error is that it is not suitable for automatic computations. In a typical
LP with thousands of variables and constraints where the use of the computer is a must, trial and
error is not a practical option because of its tremendous computational overhead. To alleviate
this problem, the simplex method always uses an identity matrix, B = I, to start the iterations.
Why does a starting B = T offer an advantage? The answer is that it will always provide a
feasible starting basic solution (provided that the right-hand side vector of the equations is non-
negative). You can see this result in Figure 7.3 by graphing the vectors of B = 1 and noting that
they coincide with the horizontal and vertical axes, thus always guaranteeing a starting basic fea-
sible solution.

The basis B = I automatically forms part of the LP equations if all the original constraints
are <. In other cases, we simply add the unit vectors where needed. This is what the artificial
variables accomplish (Section 3.4). We then penalize these variables in the obijective function to
force them to zero level in the final solution.

PROBLEM SET 7.18

1. In the following sets of equations, (a) and (b) have unique (basic) solutions, {c) has an
infinity of solutions, and (d) has ro solution. Show how these results can be verified
using graphical vector representation. From this exercise, state the general conditions
for vector dependence-independence that lead to unique solution, infinity of solutions,
and no solution.

(@ x,+3xp=2 M) 2x +3x,=1
3y +x=3 26 ~ Xy =2
(¢) 2x; +6x; =4 d) 2x; —4x, =12

xl+3x2=2 —x1+2x2=1

7.1
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2. Use vectors to determine graphically the type of solution for each of the sets of equations
below: unique solution, an infinity of solutions, or no solution. For the cases of unique so-
lutions, indicate from the vector representation (and without solving the equations alge-
braically) whether the values of the x, and x, are positive, zero, or negative.

@ (G 5)0)-0) o (7 3()-6)
o (- @ (7 5)(5)=()
o (7 -0 e G)-0)

3. Consider the following system of equations:

3]

1 0 1 2 3
2 X) + 12 Xa + | 4 X3 +3i0 Xy = 4
3 1 2 0 2

Determine if any of the following combinations forms a basis.

*(@) (P, Py, Py)
(b) (P, P, Py)
(c) (P, P, Py)

*(d) (Py, Py, P3, Py)

4. True or False?

(a) The system BX = b has a unique solution if B is nonsingular.
(b) The system BX = b has no solution if B is singular and b is independent of B.
(¢) The system BX = b has an infinity of sclutions if B is singular and b is dependent.

Generalized Simplex Tableau in Matrix Form

In this section, we use matrices to develop the general simplex tableau. This represen-
tation will be the basis for subsequent developments in the chapter.
Consider the LP in equation form:

Maximize z = CX,subjectto AX = b, X = 0

The problem can be written equivalently as

o 2 )&)-6)
0 A/\X b

Suppose that B is a feasible basis of the system AX = b, X = 0, and let X be the
corresponding vector of basic variables with Cp as its associated objective vector. The

corresponding solution may then be computed as follows (the method for inverting
partitioned matrices is given in Section D.2.7);

()6 ) 6)-6 S)60)- (%)
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The general simplex tableau in matrix form can be derived from the original stan-
dard equations as follows:

| (1 CBB"1)<1 —C)(z) _ (1 CBB—I)(O)
0 B /A0 A/\X o B! /\b
Matrix manipulations yield the following equations:
(1 CzB'A - C)(z) _ (CBB"Ib)
0 BA X B~

Given P; is the jth vector of A, the simplex tableau column associated with variable x;
can be represented as:

Basic x; Solution
Z C”B_‘Pj - ¢ CBB_lb
Xz B7'P; B

In fact, the tableau above is the same as the one we presented in Chapter 3 (see Prob-
lem 5 of Set 7.1c) and that of the primal-dual computations in Section 4.2.4. An impor-
tant property of this table is that the inverse, B™!, is the only element that changes
from one tableau to the next, and that the entire tableau can be generated once B~ is
known. This point is important, because the computational roundoff error in any
tableau can controlled by controlling the accuracy of B~ %, This result is the basis for the
development of the revised simplex method in Section 7.2.

Example 7.1-3
Consider the following LP:

Maximize Z = X + 4)52 + 7X'3 + 51:4
subject to

2x1+x2+2x3+4):4=10
3x|—x2—2x3+6):4=5

X1, X9, X1, X4 =

Generate the simplex tableau associated with the basis B = (P, P,).
Given B = (P,, P,), then X5 = (x, x;)T and Cp = (1, 4). Thus,

2 1yt o/l

-1 _ — {3 5

5 _(3 —1) _(2 _2)

5 5

Xp = (x‘) =B = (
X2

We then get

njus Lh|—
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To compute the constraint columns in the body of the tableau, we have

%(2 1 24)_(1002)
=5\ -1 2 6/7\0 1 2 0

Next, we compute the objective row as follows:

B_I(Pla P27 P3r P4) = (

LAl LAl
~

- 1 0 0 2
Cz(BY(P, P, P,, P))-C= (1,4)(0 1 2 0) - (1,4,7,5) = (0,0, 1, —-3)

Finally, we compute the value of the objective function as follows:

2= CpB'b = CpX, = (1,4)(3) -

Thus, the entire tableau can be summarized as shown below,

Basic X X7 X3 X, Solution
z 0 0 1 =3 19
X, 1 0 0 2 3
x; 9 1 2 0 4

The main conclusion from this example is that once the inverse, B7L is known, the entire
stmplex tableau can be generated from B! and the original data of the problem.

PROBLEM SET 7.1C

*1. In Example 7.1-3, consider B = (P, P,). Show that the corresponding basic solution is
feasible, then generate the corresponding simplex tableau.

2, Consider the following LP:
Maximize z = 5x; + 12x; + 4x;
subject to
X+ 2x + x5+ x, = 10
c2x; ~ 2x) — x5 =2
X1, X3, X3, x4 = ()

Check if each of the followin
(PZa PB)-; (P.?n P4)

3. In the following LP, compute the entire simplex tableau associated with
XB = ('xl:v X2, xS)T-

g matrices forms a (feasible or infeasible) basis: (P, P,),

Minimize z = 2x, + x,
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subject to
3x; + x5 — X3 =3
4x, + 3x; — X4 =0
x; + 2x; + x5=3

X1, X7, X3, Xa X5 =0

*4, The following is an optimal LP tableau:

Basic Xy Xy X3 X4 Xs Solution
z 0 0 0 3 2 ?
X5 0 U 1 1 -1 2
X, 0 1 0 1 0 6
Xy 1 0 0 -1 1 2

The variables x3, X4, and x5 are slacks in the original problem. Use matrix manipulations
to reconstruct the original LP, and then compute the optimum value.

5. In the generalized simplex tableau, suppose that the X = (X, Xy)7, where Xy corre-
sponds to a typical starting basic solution (consisting of slack and/or artificial variables)
with B = Landlet C = (Cy, Cy) and A = (D, I) be the corresponding partitions of C
and A, respectively. Show that the matrix form of the simplex tableau reduces to the fol-
lowing form, which is exactly the form used in Chapter 3.

Basic X, Xn Solution
z CBB_lD - C] CBB_l - C[I CBB—"')
Xg B D B! B b

7.2 REVISED SIMPLEX METHOD

Section 7.1.1 shows that the optimum solution of a linear program is always associated
with a basic (feasible) solution. The simplex method search for the optimum starts by
selecting a feasible basis, B, and then moving to another basis, Bpex, that yields a better
(or, at least, no worse) value of the objective function. Continuing in this manner, the
optimum basis is eventually reached.

The iterative steps of the revised simplex method are exactly the same as in the
tableau simplex method presented in Chapter 3. The main difference is that the com-
putations in the revised method are based on matrix manipulations rather than on row
operations. The use of matrix algebra reduces the adverse effect of machine roundoff
error by controlling the accuracy of computing B~!. This result follows because, as
Section 7.1.2 shows, the entire simplex tableau can be computed from the original data
and the current B~ In the tableau simplex method of Chapter 3, each tableau is gen-
erated from the immediately preceding one, which tends to worsen the problem of
rounoff error.
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Development of the Optimality and Feasibility Conditions

The general LP problem can be written as follows:

Maximize or minimize z = Ecjxj subject to E =b,x;=20,j=12,...,n
=1 j=1 :
For a given basic vector Xz and its corresponding basis B and objective vector Cg, the
general simplex tableau developed in Section 7.1.2 shows that any simplex iteration
can be represented by the following equations:

n
z+ E(Zf - Cj)Xj = CBB_II')
=

(Xg)i + E(B_IP = (B7'b),

z; — cj, the reduced cost of x; (see Sectlon 4.32),1s defined as
Z; — Cj = CBB_lpj - Cj

The notation (V); is used to represent the ith element of the vector V.

Optimality Condition. From the z-equation given above, an increase in nonbasic x;
above its current zero value will improve the value of z relative to its current value
(= CzB7'b) only if its z; — ¢; is strictly negative in the case of maximization and
strictly positive in the case of minimization. Otherwise, x; cannot improve the solution
and must remain nonbasic at zero level. Though any nonbasic variable satisfying the
given condition can be chosen to improve the solution, the simplex method uses a rule
of thumb that calls for selecting the entering variable as the one with the most negative
(most positive) z; — ¢; in case of maximization (minimization).

Feasibility Condition. The determination of the leaving vector is based on examining
the constraint equation associated with the ith basic variable. Specifically, we have

(Xpg) + E(B_lP x; = (B7'b);

When the vector P; is selected by the optimality condition to enter the basis, its
associated variable x; will increase above zero level. At the same time, all the remain-
ing nonbasic variables remain at zero level. Thus, the ith constraint equation reduces to

(Xp); = (B7'b); — (B7'P)); x

The equation shows that if (B"le),- > 0, an increase in x; can cause (Xg); to
become negative, which violates the nonnegativity condition, (X p); = 0 for all i. Thus,
we have

(B7'b); — (B7'P,); x; = 0, foralli
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This condition yields the maximum value of the entering variable x; as

o

EF), (B'P,); > 0}

xj = min
4

The basic variable responsible for producing the minimum ratio leaves the basic solu-

tion to become nonbasic at zero level.

PROBLEM SET 7.2A

*1, Consider the following LP:

Maximize = 0X + CyX7 + C3X3 + CaXy

subject to
P1x1 + PQIZ + P3X3 + P4X4 =b

Xq, Xp, X3, X4 = 0

The vectors Py, P,, P53, and Py are shown in Figure 7.4. Assume that the basis B of the cur-

rent iteration is comprised of P and P,

(a) If the vector P; enters the basis, which of the current
order for the resulting basic solution to be feasible?

(b) Can the vector Py be part of a feasible basis?
*2. Prove that, in any simplex iteration, z; — ¢; = Ofora
3, Prove thatif z; — ¢; > 0(< 0) for all the nonbasic varia
mization) LP problem, then the optimum is unique. Else, if z; —
basic xj, then the problem has an alternative optimum solution.
4. In an all-slack starting basic solution, show using the matrix form of the tableau that the

mechanical procedure used in Section 3.3 in which the objective equation is set as

n
Z— ZC]‘X}' =0
J=1

automatically computes the proper z; — &; for all the variables in the starting tableau.

5. Using the matrix form of the simplex tableau, show that in an all-artificial starting
basic solution, the procedure employed in Section 3.4.1 that calls for substituting out

two basic vectors must leave in

11 the associated basic variables.
bles x; of a maximization (mini-
¢; equals zero for a non-

FIGURE 7.4
Vector representation of Problem 1, Set 7.2a P
2

Py

71.2.
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the artificial variables in the objective function (using the constraint equations) actu-

ally computes the proper z; — ¢; for all the variables in the starting tableau.

Consider an LP in which the variable x; is unrestricted in sign. Prove that by substituting

x; = x; — xi, where xj and xj are nonnegative, it is impossible that the two variables

will replace one another in an alternative optimum solution.

Given the general LP in equation form with m equations and » unknowns, determine the

maximum number of adjacent extreme points that can be reached from a nondegencrate

extreme point {(all basic variable are >0) of the solution space.

In applying the feasibility condition of the simplex method, suppose that x, = Qs a basic

variable and that x; is the entering variable with (B“le)r # (. Prove that the resulting

basic solution remains feasible even if (B~'P;), is negative.

In the implementation of the feasibility condition of the simplex method, what are the

conditions for encountering a degenerate solution (at least one basic vanriable = 0) for

the first time? For continuing to obtain a degenerate solution in the next iteration? For
removing degeneracy in the next iteration? Explain the answers mathematically.

What are the relationships between extreme points and basic solutions under degeneracy

and nondegeneracy? What is the maximum number of iterations that can be performed

at a given extreme point assuming no cycling?

Consider the LP, maximize z = CX subject to AX = b, X = 0, where b = 0. Suppose

that the entering vector P, is such that at least one element of B'1Pj Is positive,

(a) If P;is replaced with aP;, where « is a positive scalar, and provided x; remains the
entering variable, find the relationship between the values of x; corresponding to P;
and aP;.

(b) Answer Part () if, additionally, b is replaced with 8b, where S is a positive scalar.

Consider the LP

Maximize z = CX subject to AX < b, X = 0, whereb = 0

After obtaining the optimum solution, it is suggested that a nonbasic variable x; can be
made basic (profitable) by reducing the (resource) requirements per unit of x; for the
different resources to i of their original values, @ > 1. Since the requirements per unit
are reduced, it is expected that the profit per unit of x; will also be reduced to i of its
original value. Will these changes make x; a profitable variable? Explain mathematically.
Consider the LP

Maximize 7 = CX subjectto (A, )X =b, X = 0

Define X as the current basic vector with B as its associated basis and Cp as its vector of
objective coefficients. Show that if Cp is replaced with the new coefficients D g, the values
of z; — ¢; for the basic vector X5 will remain equal to zero. What is the significance of
this result?

7.2.2 Revised Simplex Algorithm

Having developed the optimality and feasibility conditions in Section 7.2.1, we now
present the computational steps of the revised simplex method.

Step 0. Construct a starting basic feasible solution and let B and Cg be its associated

basis and objective coefficients vector, respectively.
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Step 1. Compute the inverse B~ by using an appropriate inversion method.!
Step 2. For each nonbasic variable x;, compute

_ Pa— —1 4 — .
4] <y CBB P; <

If z; — ¢; = 0 in maximization (=0 in minimization) for all nonbasic x;, stop;
the optimal solution is given by

Xz =B,z =CszXy

Else, apply the optimality condition and determine the entering variable x; as
the nonbasic variable with the most negative (positive) z; — c;in case of maz-
imization (minimization).

Step 3. Compute B"IPJ-. If all the elements of B_le are negative or zero, stop; the
problem has no bounded solution. Else, compute B™b. Then for all the strictly
positive elements of B‘le, determine the ratios defined by the feasibility condi-
tion. The basic variable x; associated with the smallest ratio 1s the leaving variable,

Step 4. From the current basis B, form a new basis by replacing the Ieaving vector P,
with the entering vector P, Go to step 1 to start a new iteration.

Example 7.2-1

The Reddy Mikks model (Section 2.1) is solved by the revised simplex algorithm. The same
model was solved by the tableau method in Section 3.3.2. A comparison between the two meth-
ods will show that they are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

maximize z = (5,4,0,0,0,0)(xq, xp, X3, X4, X5, xé)T

subject to
X3
4 1 0 0 0\[x 24
1 2 01 0 0ffx) [ 6
-1 1 0 0 1 oflx] {1
0 1 0 0 0 1/\xs 2
X6

X, X0, ..., X = 0

We use the notation C = (¢, ¢y,...,¢s) to represent the objective-function coefficients and
(Py, Py, ..., Pg) to represent the columns vectors of the constraint equations. The right-hand side
of the constraints gives the vector b.

'In most LP presentations, including the first six editions of this book, the product form method for inverting
a basis (see Section D.2.7) is integrated into the revised simplex algorithm because the product form lends it-
self readily to the revised simplex computations, where successive bases differ in cxactly one column. This
detail is removed from this presentation because it makes the algorithm appear more complex than it really
is. Mareover, the product form is razrely used in the deveiopment of LP codes because it is not designed for
automatic computations, where machine round-off error can be a serious issue. Normaily, some advanced nu-
meric analysis method, such as the LU decomposition method, is used to obtain the inverse. (Incidentatly,
TORA matrix inversion is based on LU decomposition.)
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In the computations below, we will give the algebraic formula for each step and its final nu-
meric answer without detailing the arithmetic operations. You will find it instructive to fill in the
gaps in each step.

Iteration 0
XB,, = (x3, Xy, X5, Xg), CBO =(0,0,0, 0)
By = (P, P, Ps, Pg) =1, BEI =
Thus,

Xp, = By'b = (24,6,1,2)7, 7 = CpXp, = 0
Optimality computations:
CyB;' = (0,0,0,0)
1z = ¢j}j=12 = Cp B (P, P) = (a1, c2) = (=5, -4)
Thus, Py is the entering vector.
Feasibility computations:

Xp, = (x3, x4, x5, x5)" = (24,6,1,2)7
By'P; = (6,1, -1,0)7

Hence,
24
X = min{z, % -, —} = min{4,6, -, -} =4

and P; becomes the leaving vector.

The results above can be summarized in the familiar simplex tableau format. The presenta-

tion should help convince you that the two methods are essentially the same. You will find it in-
structive to develop similar tableaus in the succeeding iterations.

Basic X; Xy X3 X X5 Xg Solution
z -5 -4 0 0 0 ¢ 0
X3 6 24
X4 6
Xs "1 1
g 0 2

Iteration 1

XBI = (x1, X4, X5, x(,), CB| = (5, 0, O, O)
B, = (P, Py, Ps, Py)

6 0 0 0
11 0 0
“1-1 01 0

0 0 0 1
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By using an appropriate inversion method (see Section D.2.7, in particular the product form
method), the inverse is given as

I =

B! =

O o=

OO = o
O = OO
- o O O

Thus,

Xp =Bi'b = (4,2,52), 2= CpXp =20

1
Optimality computations:

CpB7' = (2,0,0,0)

- 25
{2 = ¢}j=23 = Cu B (P, Ps) — (cn65) = (—3.3)
Thus, P, is the entering vector.
Feasibility computations:

Xp, = (x1, x4 x5, %6)7 = (4,2,5,2)T
BI'P, = (3.5.3.1)

Hence,

Xszin s T s

(IR IN -
wis] B
wiw | Ln

,% = min{6, % 3,2} = %

and P, becomes the leaving vector. (You will find it helpful to summarize the results above in the
simplex tableau format as we did in iteration 0.)

Iteration 2
Xp, = (X1, X3, x5, %5)", Cp, = (5,4,0,0)

B; = (P, Py, Ps, Pg)

6 4 0 0
1200
l-1 1 1 0

0 1 0 t
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Hence,
1 1
i 2 00
1 3
3 s
g 72 10
13
139
Thus, 8 2

Xs, = By = (3,3,5,3)7.2 = C5X,, = 21
Optimality computations:
CBZBEI = (%1 %1 Oa O)

{8 = ¢}jmsa = CoBy' (P, By) — (03, 4)

fl

(33)

Thus, X g is optimal and the computations end.

Summary of optimal solution:

X1 =3,X2= 1.5,2 =21

PROBLEM SET 7.2B

1. In Example 7.2-1, summarize the data of iteration 1 in the tableau format of Section 3.3,
2. Solve the following LPs by the revised simplex method:
(a) Maximize z = 6x; — 2x, + 3x;
subject to
2% —xp +2x3 =2
Xy + 4x; = 4
X1, X2, X3 = 0
*(b) Maximize z = 2x; + x, + 2x,
subject to
4x; + 3xy; + 8x3 =12
4y + x; +12x;, <8
dx; - x+ 3x;=<8
X, X3, X3 =0
() Minimize z = 2x; + x,
subject to
35+ x;=3
4x; + 3, = 6
X1+ 2x, =3

X,Xx; =0
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(d) Minimize z = 5x; — 4x; + 6x3 + 8x4
subject to
Xy + 7X2 + 313 + 7X4 = 46

3y - x + xy + 2x4 = 20
2x1+3x2- I3+ X4?-18
X1, X2, X3, X4 =0

3. Solve the following LP by the revised simplex method given the starting basic feasible
vector X, = (%2, X4, xs5)T.

Minimize z = 7x, + 11x3 — 10x4 + 26x¢

subject to
Xy — X3 +x5+ x6=6
X, — x3+x4 +3x6=8
x1+.¥2_3x:1,+x4+x$ :12

X1, X9, X3, X4, X5, X6 = 0

4. Solve the following using the two-phase revised simplex method:
(a) Problem 2-c.
(b) Problem 2-d.
(¢) Problem 3 (ignore the given starting X g )-
5. Revised Dual Simplex Method. The steps of the revised dual simplex method (using ma-
trix manipulations) can be summarized as follows:
Step0. Let By = Ibethe starting basis for which at least one of the elements of X, 18
negative (infeasible).
Stepl. Compute Xy = B~1b, the current values of the basic variables. Select the leav-
ing variable x, as the one having the most negative value. If all the elements of
X p are nonnegative, stop; the current solution is feasible (and optimal).
Step2. (a) Compute z; — ¢; = C BB'le — ¢, for all the nonbasic variables x;.
(b) For al! the nonbasic variables x;, compute the constraint coefficients
(B'in), associated with the row of the leaving variable x,.
{(c) The entering variable is associated with

0= min{

If all (B™'P,), = 0, no feasible solution exists.

Step3. Obtain the new basis by interchanging the entering and leaving vectors (P;and
P,). Compute the new inverse and go to step 1.

Zj‘_Cj

s r —lp

Apply the method to the following problem:
Minimize z = 3x; + 2x;
subject to
3+ x=3

4x1+3x226
x1+2x253

xpx =0
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BOUNDED-VARIABLES ALGORITHM

In LP models, variables may have explicit positive upper and lower bounds. For exam-
ple, in production facilities, lower and upper bounds can represent the minimum and
maximum demands for certain products. Bounded variables also arise prominently in
the course of solving integer programming problems by the branch-and-bound algo-
rithm (see Section 9.3.1).

The bounded algorithm is effictent computationally because it accounts for the
bounds implicitly. We consider the lower bounds ftrst because it is simpler. Given X = L,
we can use the substitution

X=L+X, X=0

throughout and solve the problem in terms of X' (whose lower bound now equals
zero). The original X is determined by back-substitution, which is legitimate because it
guarantees that X = X' + L will remain nonnegative for all X' = 0.
Next, consider the upper bounding constraints, X = U. The idea of direct substitu-
tion (i.e., X = U — X", X" = 0) is not correct because back-substitution, X = U — X",
does not ensure that X will remain nonnegative. A different procedure is thus needed.
Define the upper bounded LP model as

Maximize z = {CX[(A, DX =b,0 < X = U}
The bounded algorithm uses only the constraints (A, )X = b, X = 0, while account-
ing for X = U implicitly by modifying the simplex feasibility condition.
Let Xz = B!b be a current basic feasible solution of (A, DX =b,X = 0, and
suppose that, according to the (regular) optimality condition, P; is the entering vector.

Then, given that all the nonbasic variables are zero, the constraint equation of the ith
basic vartable can be written as

(Xg): = (B7b); — (B7'P)); x;

When the entering variable x; increases above zero level, (Xp); will increase or decrease
depending on whether (B~1P ;); is negative or positive, respectively. Thus, in determin-
ing the value of the entering varlable x;, three conditions must be satisfied.

1. The basic variable (X g); remains nonnegative—that is, (Xg); = 0.

2. The basic variable (X); does not exceed its upper bound—that is, (X g); = (Ug);,
where Upg comprises the ordered elements of U corresponding to Xp.

3. The entering variable x; cannot assume a value larger than its upper bound—that

is, x; = u;, where y; is the jth element of U.

The first condition (Xjp); = 0 requires that
(B—lh)i - ( _1P )1 X =0
It is satisfied if
(B7'b);
(B7'P));

X =6 = miin{ (B7'P;); > 0}
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This condition is the same as the feasibility condition of the regular simplex method.

Next, the condition (Xg); = (Us);: specifies that
(B7b); — (BB x; = (Us),
It is satisfied if
(B”'b); — (Us):
(B™'P));

enters the solution at the level that satisfies

(B'P); < 0}

xj = 62 = mllﬂ{

Combining the three restrictions, x;
all three conditions—that is,
xi = min{Bl, 92, LLJ,}
«t iteration depends on whether x; enters the solu-

The change of basis for the ne
hat (Xg), is the leaving variable, then we have the

tion at level 84, 0, OF u;. Assuming t
following rules:

L x; = 6;: (X5), leaves the basic solution (becomes nonbasic) at level zero. The
new iteration is generated using the normal simplex method with x; and (Xg), as
the entering and the leaving variables, respectively.

2. x; = 8y (X3)r becomes nonbasic at its upper bound. The new iteration is gener-
ated as in the case of x; = 6y, with one modification that accounts for the fact
that (X ), will be nonbasic at upper bound. Because the values of 8; and 6 re-
quire all nonbasic variables to be at zero level (convince yourself that this is the
case!), we must convert the new nonbasic (X ), at upper bound to a nonbasic
variable at zero level. This is achieved by using the substitution (Xp),=

(Ug), — (Xp),, where (X5}, = 0. Itis immaterial whether the substitution is

made before or after the new basis 1S computed.

3. x; = uy The basic vector X z remains unchanged because x; = U; stops short of
forcing any of the current basic variables to reach its lower (= 0) or upper bound.
This means that x; will remain nonbasic but at upper bound. Foltowing the argument
just presented, the new iteration is generated by using the substitution x; = u; — Xj.

A tie among 8y, 6, and u; may be broken arbitrarily. However, it is preferable,
where possible, to implement the rule for x; = u; because it entails less computation.

j
The substitution x; = tj — Xj will change the original ¢;, P}, and b to c;- = —Cj

P} = —Pjandbto b’ = b — uP; This means that if the revised simplex method is used,
all the computations (e.g., B!, Xg, and z; — ;) should be based on the updated values
of C, A, and b at each iteration (see Problem 5, Set 7.3a, for further details).

Example 7.3-1
Solve the following 1P model by the upper-bounding al,gorithm.2
Maximize z = 3x; + 5y + 2x3

= "Algébraic = ftérations =

2¥ou can use TORA’s 'LinéﬁtligrbgrAfﬂﬁiiqg = Solve problem
ile toraEx7.3-1.txt).

Boundedsnmplex to produce the associated simplex iterations (f
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subject to
X+ y+ ZX3 =14
2x; + 4y + 3x; =< 43
0=x=4,7=y=10,0=x3=3

The lower bound on y is accounted for using the substitution y = x, + 7, where
0=x,=10-7=3.

To avoid being “sidetracked” by the computational details, we will not use the revised sim-
plex method to carry out the computations. Instead, we will use the compact tableau form. Prob-
lems 5,6, and 7, Set 7.3a address the revised version of the algorithm.

Iteration 0

Basic X, X X3 X4 Xs Solution
z -3 =5 -2 0 0 35
X, 1 1 2 1 0 7
x5 2 4 3 0 1 15

We have B = B! = Tand X5 = (x4, x5)7 = B™b = (7, 15)7. Given that x, is the entering
variable (z; — ¢y = —5}, we get

B'P, = (1,4)7
which yields

0,

7 15
min{T,T} = 3.75, corresponding to xs

f, = oo(because all the elements of B™'P, > 0)

Next, given the upper bound on the entering variable, x, = 3, it follows that

X; = min{3.75, oo, 3}
3(=uy)

Because x; enters at its upper bound (= &, = 3), X 3 remains unchanged, and x, becomes non-
basic at its upper bound. We use the substitution x, = 3 — x} to obtain the new tableau as

Il

Basic X X X3 Xy X5 Solution
z =3 5 -2 0 0 50
X, 1 -1 2 1 0 4
X5 2 —4 3 0 1 3

The substitution in effect changes the original right-hand side vector from b = (7,15)7 to
b’ = (4, 3)". This change should be considered in future computations.
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lteration 1. The entering variable is x;. The basic vector X g and B! (= I) are the same as in it-
eration 0. Next,

B'P, = (1,2)

4 3 . .

0, = min{I, —2-} = 1.5, corresponding to basic xs
g, = co(because B™'P; > 0)

Thus,

min{1.5, 0, 4}

X4

=15(=8)

Thus, the entering variable x; becomes basic, and the leaving variable x5 becomes nonbasic at
zero level, which yields

Basic b X3 X3 Xy X5 Solution
s 3 109
Z 0 -1 2 0 2 N
X 0 1 : 1 -5 :
3 3
X, 1 -2 3 0 -lz 5
Iteration 2 The new inverse is
1
1
0 3

Now
Xp = (x4 x1) = B b = (%’%)T

where b’ = (4,3)7 as computed at the end of iteration 0. We select x} as the entering variable,
and, noting that P3 = —P, we get

Blp, = (1, -2)7
Thus,

—~—
i

&, = miny —} = 2.5, corresponding to basic x4

3
5—4
6, = min{—,zjz—} = 1.25, corresponding to basic x;

We then have
x4 = min{2.5,1.25, 3}
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Because x; becomes nonbasic at its upper bound, we apply the substitution x; = 4 — xj to
obtain

Basic x| x5 X3 X4 X5 Solution
5 3 109
z ¢ -1 3 0 3 5
1
Xy 0 1 ) 1 -1 2
xf -1 2§ 0 ; -3

Next, the entering variable x5 becomes basic and the leaving variable x| becomes nonbasic
at upper bound, which yields

Basic Xy X3 X3 Xy X5 Solution
L 7 3 [E£)
Z 2 Y 4 0 4 4
1 3 1 3
X 2 0 1 1 4 4
. 1 _3 L El
Xz 2 4 0 i a

The last tableau is feasible and optimal. Note that the last two steps could have been reversed—
meaning that we could first make xj basic and then apply the substitution x; = 4 — xj (try it!).
The sequence presented here involves less computation, however.

The optimal values of x;, X3, and x; are obtained by back-substitution as x;= u; — x{ =

4—0=4,x2=u2—x2’=3—§=%,andx3=0.Finally,wegety=lz+ 12:7""%:%5-

The associated optimal value of the objective function z is 3;?‘3

PROBLEM SET 7.3A

1. Consider the following linear program:
Maximize z = 2x; + x;
subject to
N t+x=3

0=x=20=<x,=2

(a) Solve the problem graphically, and trace the sequence of extreme points leading to
the optimal solution. (You may use TORA.)

(b) Solve the problem by the upper-bounding algorithm and show that the method pro-
duces the same sequence of extreme points as in the graphical optimal solution (you
may use TORA to generate the iterations).

(c) How does the upper-bounding algorithm recognize the extreme points?
*2. Solve the following problem by the bounded algorithm:
Maximize z = 6x; -+ 2x, + 8Bx3 + 4xy + 2x5 + 10x4
subject to
le + X2 + 8X3 + 2.X.'4 + 2x5 + 416 =13 .

0=x;=1,j=12,...,6
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3. Solve the following problems by the bounded algorithm:
(a) Minimize z = 6x; — 2xp — 3x3
subject to
2)C1 + 4x2 + 213 = 8§
x1—2x2+3x357
05x152,0£x252,05x351
(b) Maximize z = 3x; + 5x; +.2x3

subject to
X1 + 2x2 + ZX3 = 10

2X1 + 412 + 3)63 = 15
0=x,=40=xn=30=x=3
4. In the following problems, some of the variables have positive lower bounds. Use the
bounded algorithm to solve these problems.
(a) Maximize z = 3x1 + 212 - 21'3
subject to
2y +x a3 =8
x + 2x2 — X3 = 3
1sx=30=x=32=x
(b) Maximize z = x; + 2%
subject to
—x;+2x%,=0
3x; + 2x, = 10
—X1 + X2 =1
151153,05X‘251

(C) Maximize z = 4x1 + 2x2 + 6x3
subject to

1A

4x; — X3 9
—x;+x;+2x;= 8
—3x; + x + 4xy =12
15x153,05x2£5,05x3£2

5. Consider the matrix definition of the bounded-variables probiem. Suppose that the vec-
tor X is partitioned into (X, X,), where X, represents the basic and nonbasic variables
that will be substituted at upper bound during the course of the algorithm. The problem

( z ) ( )

u
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Using X, = U, — X/, where U, is a subset of U representing the upper bounds for X,
let B (and X g) be the basis of the current simplex iteration after X, has been substituted
out. Show that the associated general simplex tableau is given as

Basic ¢ xT Solution
z CgB'D,-C, -Csp'D,+C, CBW+CU,
X; B'D, -~BD, B’

whereb’ = b — D, U,.

6. In Example 7.3-1, do the following:

(a) InTteration 1, verify that X = (x4, x;)7 = (%, %
(b) In lteration 2, show how B~ can be computed from the original data of the problem.
Then verify the given values of basic x,; and x5 using matrix manipulation.

7. Solve part (a) of Problem 3 using the revised simplex (matrix) version for upper-bounded
variables.

8. Bounded Dual Simplex Algorithm. The dual simplex algorithm (Section 4.4.1) can be
modified to accommodate the bounded variables as follows. Given the upper bound con-
straint x; < ; for all j (if 4; is infinite, replace it with a sufficiently large upper bound M),
the LP probiem is converted to a dual feasible (i.c., primal optimal) form by using the
substitution x; = u; — xj, where necessary.

)7 by using matrix manipulation.

Step 1.  If any of the current basic variables (X p); exceeds its upper bound, use the
substitution (Xp); = (Ug); — (Xg)}. Go to step 2.

Step 2.  If all the basic variables are feasible, stop. Otherwise, select the leaving variable
x, as the basic variable having the most negative value. Go to step 3.

Step 3.  Select the entering variable using the optimality condition of the regular dual
simplex method (Section 4.4.1). Go to step 4.

Step4. Perform a change of basis. Go to step 1.

Apply the given algorithm to the following problems:
(a) Minimize z = —3x; — 2x; + 2x;
subject to

2X1+X2+X358
—x; + 2xy + x3 = 13
0=x=20=x,=30=<x=1

(b) Maximize z = x; + 5xp — 2x4
subject to
4.I1 + 2x2 + 2x3 =26

Xq + 3X2 + 4X3 = 17

0=x=20=x=3,x=0

74 DUALITY

We have dealt with the dual problem in Chapter 4. This section presents a more rigor-
ous treatment of duality and allows us to verify the primal-dual relationships that
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7.4.1

74.2

formed the basis for post-optimal analysis in Chapter 4. The presentation also lays the
foundation for the development of parametric programming.

Matrix Definition of the Dual Problem

Suppose that the primal problem in equation form with m constraints and n variables
is defined as

Maximize z = CX
subject to
AX =b
X=0

Letting the vector Y = (y1, ¥2.-- -5 yn) Tepresent the dual variables, the rules in
Table 4.2 produce the following dual problem:

Minimize w = Yb
subject to

YA=C
Y unrestricted

Some of the constraints YA = C may override unrestricted Y.

PROBLEM SET 7.4A

1. Prove that the dual of the dual is the primal.

2. If the primal is given as min z = {cX|AX = b, X = 0}, define the corresponding dual
problem.

Optimal Dual Solution

This section establishes relationships between the primal and dual problems and shows
how the optimal dual solution can be determined from the optimal primal solution. Let
B be the current optimal primal basis, and define Cjp as the objective-function coeffi-
cients associated with the optimal vector Xp.

Theorem 7.4-1. (Weak Duality Theory). For any pair of feasible primal and dual
solutions (X, Y), the value of the objective function in the minimization problem sels ar
upper bound on the value of the objective function in the maximization problem. For the
optimal pair (X*, Y*), the values of the objective functions are equal.

Proof. 'The feasible pair (X, Y) satisfies all the restrictions of the two problems.
Premultiplying both sides of the constraints of the maximization problem with
(unrestricted) Y, we get

YAX =YB=w (1)
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Also, for the minimization problem, postmultiplying both sides of each of the first two
sets of constraints by X(= 0), we get

YAX = CX
or _
YAX =CX =z (2)

(The nonnegativity of the vector X is essential for preserving the direction of the in-
equality.) Combining (1} and (2), we get z < w for any feasible pair (X,Y).

Note that the theorem does rot depend on labeling the problems as primal or
dual. What is important is the sense of optimization in each problem. Specifically, for
any pair of feasible solutions, the objective value in the maximization problem does not
exceed the objective value in the minimization problem.

The implication of the theorem is that, given z = w for any feasible solutions, the
maximum of z and the minimum of w are achieved when the two objective values are
equal. A consequence of this result is that the “goodness” of any feasible primal and
dual solutions relative to the optimum may be checked by comparing the difference

z+w 2(w — z)

(w — z) to *=—. The smaller the ratio =, -, the closer the two solutions are to

being optimal. The suggested rule of thumb does not imply that the optimal objective
value is 25"

What happens if one of the two problems has an unbounded objective value? The
answer is that the other problem must be infeasible. For if it is not, then both problems
have feasible solutions, and the relationship z = w must hold—an impossible result,
because either z = +00 or w = —00 by assumption.

The next question is: If one problem is infeasible, is the other problem unbound-
ed? Not necessarily. The following counterexample shows that both the primal and the
dual can be infeasible (verify graphically!):

Primal. Maximize z = {xl + XZ|I1 - Xy = —1, —X1 + xy, = -1, X1, Xy = 0}
Dual. Minimizew = {-y1—wly —wm=1L,-n+p =Ly p=0}

Theorem 7.4-2. Given the optimal primal basis B and its associated objective coefficient
vector Cg, the optimal solution of the dual problem is

Y = CBB_1

Proof. The proof rests on verifying two points: Y = CgB™ is a feasible dual solution
and z = w, per Theorem 7.4-1.

The feasibility of Y = CzB™! is guaranteed by the optimality of the primal,
zj — ¢; = O for all j—that is,

C;B'A-C=0

(See Section 7.2.1.) Thus, YA — C = 0 or YA = C, which shows that Y = CzBlisa
feasible dual solution.
Next, we show that the associated w

w=Yb

z by noting that
CpB™'b 1)

il
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Similarly, given the primal solution X = B~ b, we get
z=0CpgXg=CzB b (2)

From relations (1) and (2), we conclude that z = w.

The dual variables Y = CgB™! are sometimes referred to as the dual or
shadow prices, names that evolved from the economic interpretation of the dual
variables in Section 4.3.1.

Given that P; is the jth column of A, we note from Theorem 7.4-2 that

Zj - Cj = CBB_IPJ; - Cj = YP] - Cj

represents the difference between the left- and right-hand sides of the dual constraints.
The maximization primal starts with z; — ¢; < 0 for at least one j, which means that
the corresponding dual constraint, YP; = c;, is not satisfied. When the primal optimal is
reached we get z; — ¢; = 0, for all j, which means that the corresponding dual solution
Y = CzB™! becomes feasible. Thus, while the primal is seeking optimality, the dual is
automatically seeking feasibility. This point is the basis for the development of the dual
simplex method (Section 4.4.1) in which the iterations start better than optimal and in-
feasible and remain so until feasibility is acquired at the last iteration. This is in con-
trast with the (primal) simplex method (Chapter 3), which remains worse than optimal
but feasible until the optimal iteration is reached.

Example 7.4-1

The optimal basis for the following LP is B = (P,, P;). Write the dual and find its optimum solu-
tion using the optimal primal basis.

Maximize z = 3x; + 5x;
subject to
X, + 2x, + x3 =3
—x; + 3x; +x,=2
Xy, Xp, X3, %4 = 0
The dual problem is
Minimize w = 5y, + 2y,
subject to
n— y» =3
2y + 3y, =5
ywy=0

We have X = (xy, x4)" and Cz = (3, 0). The optimal basis and its inverse are

(1 0\, (1 0
B‘(—1 1)’B ‘(1 1)
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The associated primal and dual values are

(xh x4)T = B—lb = (Sv 7)T
(> 1) = CsB™' = (3,0)

Both solutions are feasible and 7 = w = 15 (verify!). Thus, the two solutions are optimal.

PROBLEM SET 7.4B

L. Verify that the dual problem of the numeric example given at the end of Theorem 7.4-1 is
correct.'Then verify graphically that both the primal and dual problems have no feasible
solution.

2. Consider the following LP:

Maximize z = 50x; + 30x, + 10x4

subject to
20+ xy = 1
2x, = =5
4x, +tx3= 6

X1, X7, X3 =0

(a) Write the dual.
(b) Show by inspection that the primal is infeasible.
(¢) Show that the dual in (a) is unbounded,

(d) From Problems 1 and 2, develop a general conclusion regarding the relationship be-
tween infeasibility and unboundedness in the primal and dual problems.

3. Consider the following LP:
Maximize z = 5x, + 12x, + dx,

subject to
2x; — X3 + 3x3 =2
X+2np+ xatx =5
Xy, X9, X3, X4 = 0

(a} Write the dual.

(b) In each of the following cases, first verify that the given basis B is feasible for the pri-
mal. Next, using Y = CzB™, compute the associated dual values and verify whether
or not the primal solution is optimal.

@ B=(P,P;) (iii) B = (P, P,)
(i) B = (P, P;) (iv) B = (P, P,)
4. Consider the following LP:

Maximize z = 2x, + 4x, + 4x; — 3xy
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subject to
Xt xp+ X3 =4
X tdx,+ tx =8
X1, X3, X3, X4 = 0
(a) Write the dual problem.
(b) Verify that B = (P, P3) Is optimal by computing z; ~ ¢; for all nonbasic P;.

(¢) Find the associated optimal dual solution.

#5, An LP model includes two variables x; and x; and three constraints of the type =.The
associated slacks are xi, X4, and xs. Suppose that the optimal basis is B = (Py, P,, P3),
and its inverse is

0o -1 1
Bl={0 1 0
1 1 -1

The optima! primal and dual solutions are
Xp = (x1, %, %)" = (2,6,2)
Y = (y, ) = (0,3,2)

Determine the optimal value of the objective function in two ways using the primal and
dual problems.

6. Prove the following relationship for the optimal primal and dual solutions:
E:ilci(B_lpk)i = 2:11}’:'“[:(

where Cg = (€1, Cas- - - » Cm) a0d Py = (@14, Q2+ - apm) fork = 1,2,...,n,and
(B71P,); is the ith element of B™'P.
*7, Write the dual of

Maximize z = {CX|AX = b, X unrestricted}
8. Show that the dual of
Maximize z = {CXIAX =z=p, 0<L=X= U}

always possesses a feasible solution.

7.5 PARAMETRIC LINEAR PROGRAMMING

Parametric linear programming is an extension of the post-optimal analysis presented
in Section 4.5. It investigates the effect of predetermined continuous variations in the
objective function coefficients and the right-hand side of the constraints on the optimum
solution.

Let X = (X, Xp,-- -, X,) and define the LP as

Maximize z = {CXIZijj =bX= 0}
=1
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In parametric analysis, the objective function and right-hand side vectors, C and b, are
replaced with the parameterized functions C(¢) and b(t), where ¢ is the parameter of
variation. Mathematically, ¢+ can assume any positive or negative value. In practice,
however, ¢ usually represents time, and hence it is nonnegative. In this presentation we
will assume ¢ = 0.

The general idea of parametric analysis is to start with the optimal solution at
t = 0. Then, using the optimality and feasibility conditions of the simplex method, we
determine the range 0 =< ¢ < ¢, for which the solution at t = Q remains optimal and
feasible. In this case, #; is referred to as a critical value. The process continues by de-
termining successive critical values and their corresponding optimal feasible solu-
tions, and will terminate at ¢ = ¢, when there is indication that either the last solution
remains unchanged for ¢ > ¢, or that no feasible solution exists beyond that critical
value.

Parametric Changes in C

Let Xz, B;, C5(r) be the elements that define the optimal solution associated with
critical ¢; (the computations start at f; = 0 with By as its optimal basis). Next, the criti-
cal value #;;{ and its optimal basis, if one exists, is determined. Because changes in C
can affect only the optimality of the problem, the current solution X5 = B; b will re-
main optimal for some ¢ = ; so long as the reduced cost, z;() — ¢;(t), satisfies the fol-
lowing optimality condition:

Z}(t) - C}(t) = CB'(I)BI_IPI - Cj(f) = 0, fOI’ all_]

The value of t;,; equals the largest ¢+ > f; that satisfies all the optimality conditions.

Note that nothing in the inequalities requires C(¢) to be linear in t. Any function
C(¥), linear or nonlinear, is acceptable. However, with nonlinearity the numerical ma-
nipulation of the resulting inequalities may be cumbersome. (See Problem 5, Set 7.5a
for an illustration of the nonlinear case.)

Example 7.5-1

Maximize z = (3 — 6)x; + (2 — 2)x, + (5 + 50)x3

subject to
X1+ 2%+ x3=40
3x, + 2x7 = 60
x; + 4x, = 30
Xy, X3, %3 = 0
We have

C(t)=(3—-6£,2 — 2,5+ 5),t =0

- The variables x4, x5, and xg will be used as the slack variables associated with the three
constraints.

-
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Optimal Solutionat: = 4, = 0

.Basic X, X; X3 Xy X5 Xg Solution
z 4 0 0 1 2 0 160
X - 1 0 3 -3 0 5
X3 2 0 1 0 i 0 30
x4 2 0 0 -2 1 1 10

X, = (x2, 13, x(,)T = (5,30, 10)T
Cp,(t) = (2 — 21,5 + 5,0)
| R
i
0
-2

Il

0
B;' 0
1

Ll ST L A L

The optimality conditions for the current nonbasic vectors, Py, Py, and Ps, are
{Ch(£)B'P; — cj(1)}jmras = (4 + 1461 — 1,2+ 36) =0
Thus, X 5, remains optimal so jong as the following conditions are satisfted:
4+ 14 =0

1—-¢t=0
2+3=40

Because ¢ = 0, the second inequality gives¢ =< 1 and the remaining two inequalities are satisfied
for all £ = 0. We thus have 4 = 1, which means that Xg, remains optimal (and feasible) for
0=r=1.

The reduced cost zz{r) — ca(f) = 1 — t equals zero at ¢ = 1 and becomes negative for
¢t > 1. Thus, P, must enter the basis for 7 > 1. In this case, P, must leave the basis (see the opti-
mal tableau at 1 = 0). The new basic solution Xp, is the alternative solution obtained at ¢ = 1 by

letting P, enter the basis—that is, Xz, = {x4, X3, xs)T and B,=(Py, P3, Pg).

Alternative Optimal Basisat7 =t = 1

e = =
=
-l
i

o o -

1 1
Bl= 0 2
0 0

Thus,
Xp, = (x4 %3 %)" = Bi'b = (10,30,30)"
Cp,(t) = (0,5 + 5t,0)
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The associated nonbasic vectors are P;, P, and Ps, and we have
- 9 4+ 27 5+5
{Cp()BT'P; — ci(1)}j=125 = (va —2+ Zt’TI) =0

According to these conditions, the basic solution X 5 remains optimal for all t = 1. Observe
that the optimality condition, —2 + 2¢ = 0, automatically “remembers” that X 5 is optimal for a
range of ¢ that starts from the last critical value f; = 1. This will always be the case in parametric
programming computations.

The optimal solution for the entire range of ¢ is summarized below. The value of z is com-
puted by direct substitution.

t Xq Xg X3 Z

0=:=1 0 5 30 160 + 140t
r=1 0 0 30 150 + 150¢

PROBLEM SET 7.5A

*1. In example 7.5-1, suppose that ¢ is unrestricted in sign. Determine the range of ¢ for which
X g, remains optimal.

2. Solve Example 7.5-1, assuming that the objective function is given as
*(a) Maximize 7 = (3 + 3t)x; + 2x; + (5 — 6t)x;
(b) Maximize z = (3 — 2t)x; + (2 + £)xy + (5 + 2t)x3
(¢) Maximize z = (3 + t}x; + (2 + 2t)x + (5 — 1)x3
3. Study the variation in the optimal solution of the following parameterized LP given ¢ = 0.
Minimize z = (4 — )x; + (1 = 3)x, + (2 — 2t)x3
subject to
3x1 + ).’2+2X3=3
4XI + 3x2 + 2X3 = 6
x1+2x2+5x3£4
X1,X9, X3 =0
4. The analysis in this section assumes that the optimal solution of the LP at £ = 0 is ob-
tained by the (primal) simplex method. In some problems, it may be more convenient to
obtain the optimal solution by the dual simplex method (Section 4.4.1). Show how the

parametric analysis can be carried out in this case, then analyze the LP of Example 4.4-1,
assuming that the objective function is given as

Minimize z = (3 + t)x; + (2 + 4)x; + x3,2 = 0

*5. In Example 7.5-1, suppose that the objective function is nonlinear in ¢(z = 0) and is de-
fined as

Maximize z = (3 + 2% x; + (2 — 2t%)x, + (5 — £)x3

Determine the first critical value #.
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7.5.2 Parametric Changesinb

The parameterized right-hand side b(¢) can affect only the feasibility of the problem.
The critical values of ¢ are thus determined from the following condition:

Xp(t) =B7b(¢e) =0

Example 7.5-2

Maximize z = 3x; + 2x3 + 5x3
subject to
X1+ 2%+ x3=40-—¢
3x + 2xy < 60 + 2¢
X3 + 4x, =30-"Tt
X1, X0, x3 =0

Assume thatt = 0.
Att = 1y = 0, the problem is identical to that of Example 7.5-1. We thus have

X5, = (x5, %3, %)T = (5,30,10)7

1 1
3 73 0

Bi'={ o !
-2 11

To determine the first critical value #, we apply the feasibility conditions Xpg (1) =
B;ylb(z) = 0, which yiclds

Xa S_I O
x31=130+¢|=1}0
Xg 10 — 3¢ 0

These inequalities are satisfied for ¢ < ?, meaning that r, = 139 and that the basis By remains
feasible for the range 0 = ¢ = 139. However, the values of the basic variables x,, x3, and xg will

change with ! as given above.

The value of the basic variable x (= 10 — 3¢) will equal zero att = 1, = 13—0, and will be-
come negative for r > 13—0. Thus, atr = %, we can determine the alternative basis B, by applying
the revised dual simplex method {(see Problem 5, Set 7.2b, for details). The leaving variable is x¢.

Alternative Basisat = t; = 13-0-

Given that xg is the leaving variable, we determine the entering variable as follows:
Xp, = (X2, X3, x6)7, Cp, = (2,5,0)

Thus,

{z; — ci}i=1as = {CaBy'B; — ¢j}j1a5 = (4,1,2)
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Next, for nonbasic X;,J = 1,4,5, we compute

(Row of By! associated with x6){P1, Py, Ps) = (Third row of By')(P,, Py, P5)
= (_2, ]., 1)(1)1, P4, Ps)
=(2,~-2,1)

The entering variable is thus associated with

. 1 1
6 = ming -, STz

Thus, P4 is the entering vector. The alternative basic solution and its B; and By! are

Xg, = (x3, x3, x4)7

2 1 1 0o o 1
Bi=(P.PP)={0 2 0[B'=[0 ! o
4 0 0 1 _El -1

The next critical value ¢, is determined from the feasibility conditions, X 5()=BT'b(t) = 0,
which yields

x5 30 4“ 7t 0
X3 - 30 + ! 0
x4 "102+ 3r 0

These conditions show that B, remains feasible for 13—0 =t = 979

Att =1 = ?, an alternative basis can be obtained by the revised dual simplex method. The
leaving variable is x,, because it corresponds to the condition yielding the critical value t.

Alternative Basisatt = 1, = 3_1.—0
Given that x; is the leaving variable, we determine the entering variable as follows:
Xp, = (x2, 33, x4)7, Cp, = (2,5,0)
Thus,
{2 = ¢ilimiss = {CoBT'P; = c}mrs6 = (5.21)

Next, for nonbasic x5, J = 1,5, 6, we compute

(Row of By associated with x,)(P,, Ps, P) = (First row of B (P, Ps, P;)

= (0= 0, %)(Pla Ps, Pg)

=l nl

o (4’ 0, 4)
Because all the denominator clements, G, 0, i) are =0, the problem has no feasible solution for
t> 379 and the parametric analysis ends at ¢ = = 3.,,—0. ,

pd
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The optimal solution is summarized as

! X Xz X3 Z
0=st=Y 0 5-1t 30+t 160 +3¢
Y=r=® 0 T 30+ 165+%

> % (No feasible solution exists)

PROBLEM SET 7.5B

*1. In Example 7.5-2, find the first critical value, ¢, and define the vectors of B; in each of
the following cases:
*(a) b(t) = (40 + 2r, 60 — 3,30 + 6:)7
(b) b(r) = (40 — 1,60 + 2,30 — 56)T
*2. Study the variation in the optimal solution of the following parameterized LP, given
t =0
Minimize z = 4x; + x; + 2x3

subject to
Sx; 2 +2x3 =3+ ¥
4x; +3x; + 23 =6+ 2
X+ 25 +50 =41t

X1, X9, X3 = 0

3. The analysis in this section assurnes that the optimal LP solution at ¢ = 0 is obtained by
the (primal) simplex method. In some problems, it may be more convenient to obtain the
optimal solution by the dual simplex method (Section 4.4.1). Show how the parametric
analysis can be carried out in this case, and then analyze the LP of Example 4.4-1, assum-
ing that ¢t = 0 and the right-hand side vector is

b(¢) = (3+2t,6 —1,3—4)

4. Solve Problem 2 assuming that the right-hand side is changed to
b(t) = (3 + 33,6 + 22,4 — )7

Further assume that ¢ can be positive, zero, or negative.
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