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CHAPTER 17

Markov Chains

Chapter Guide. This chapter provides a basic background about Markov chains and
their use in practice, including cost-based models. Markov chain notation is “cumber-
some” and its computations are tedious. To alleviate this problem, the more readable
matrix notation is used where possible. With regard to the computations, two Excel
templates are provided to handle the basic calculations for a Markov chain of any size,
including n-step transition and absolute probabilities, steady-state probabilities, and
first passage times in both ergodic and absorbing chains. Both spreadsheets should be
helpful in solving end-of-section problems.

This chapter includes 17 solved examples, 42 end-of-section problems, and 2
Excel templates. The AMPL/Excel/Solver/TORA programs are in folder ch17Files.

DEFINITION OF A MARKOV CHAIN

Let X, be a random variable that characterizes the state of the system at discrete points
in time ¢ = 1,2,... The family of random variables {Xr} forms a stochastic process.
The number of states in a stochastic process may be [inite or infinite, as the following
two examples demonstrate:

Example 17.1-1 (Machine Maintenance)

The condition of a machine at the time of the monthly preventive maintenance is characterized
as fair, good, or excellent. For month t, the stochastic process for this situation can be represent-
ed as:

"0, if the condition is poor
X, =<1, iftheconditionisfair ;,t=1,2,...
2, if the condition is good

The random variable X is finite because it represents three states: poor (0), fair (1), and good (2).
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Example 17.1-2 (Job Shop)

Jobs arrive randomly at a job-shop at the average rate of 5 jobs per hour. The arrival process fol-
lows a Poisson distribution which, theoretically, allows any number of jobs between zero and infin-
ity to arrive at the shop during the time interval (0, ¢). The inifinte-state process describing the
number of arriving jobs is

X, =012,...,t>0

A stochastic process is a Markov process if the occurrence of a future state de-
pends only on the immediately preceding state. This means that given the chronologj-
cal times ty, 1, . . ., t,,, the family of random variables { X, } = {xy, x5,..., x,} is said to
be a Markov process if it possesses the following property:

P{Xt,, = xant Rl T PR Xr(, = xﬂ} = P{Xr,, = xant,,_. = x,,_1}

Ve

In a Markovian process with # exhaustive and mutually exclusive states (out-
comes), the probabilities at a specific point in time ¢ = 0, 1,2, ... is usually written as

pi=P{X, =jlX_ =i, L)H=12...,nt=012..T

This is known as the one-step transition probability of moving from state i atz — 1 to
state j at £. By definition, we have

zpﬁ =1i=12,...,n
i
Pz 0,(5,/)=12,....n

A convenient way for summarizing the one-step transition probabilities is to use the
following matrix notation:

Py Pz Pz - Pin

P21 Pn P -~ P
P=1". : : : :

Pnl Pn2 Pn3 ce- Prn

The matrix P defines the so-called Markov chain. It has the property that all its transi-
tion probabilities p; are fixed (stationary) and independent over time. Although a
Markov chain may include an infinite number of states, the presentation in this chapter
is limited to finite chains only, as this is the only type needed in the text.

Example 17.1-3 (The Gardener Problem)

Every year, at the beginning of the gardening season (March through September), a gardener
uses a chemical test to check soil condition. Depending on the outcome of the test, productivity
for the new season falls in one of three states: (1) good, (2} fair, and (3} poor. Over the years, the
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17.1 Deéfinition of a Markov Chain 643

gardener has observed that last year’s soil condition impacts current year’s productivity and
that the situation can be described by the following Markov chain:

State of the
system next
year
1 2 3
State of 12 5 3
P = thesystem( 2| 0 5 .
this year 3\o 0 1

The transition probabilities show that the soil condition can either deteriotate or stay the
same but never improve. If this year’s soil is good (state 1), there is a 20% chance it will not change
next year, a 50% chance it will become fair (state 2), and a 30% chance it will deteriorate to a poor
condition (state 3). If this year’s soil condition is fair (state 2), next year’s productivity may remain
fair with probability .5 or become poor (state 3), also with probability .5. Finally, a poor condition
this year (state 3) can only lead to an equal condition next year (with probability 1).

The gardener can alter the transition probabilities P by using fertilizer to boost soil condi-
tion. In this case, the transition matrix becomes:

1 2 3
1/30 .60 .10
P =2[.10 60 30
3\.05 40 .55

The use of fertilizer now allows improvements in the deteriorating condition. There is a 10%
chance that the soil condition will change from fair to good (state 2 to state 1), a 5% chance it
will change from poor to good (state 3 to state 1), and a 40% chance that a poor condition will
become fair (state 3 to state 2).

PROBLEM SET 17.1A

1. An engineering professor purchases a new computer every two years with preferences
for three models: M1, M2, and M3. If the present model is M1, the next computer may
be M2 with probability .2 or M3 with probability .15. If the present model is M2, the
probabilities of switching to M1 and M3 are .6 and .25, respectively. And, if the present
model is M3, then the probabilities of switching to M1 and M2 are .5 and .1, respectively.
Represent the situation as a Markov chain.

*2. A police car is on patrol in a neighborhood known for its gang activities. During a patrol,
there is a 60% chance that the location where help is needed can be responded to in time,
else the car will continue regular patrol. Upon receiving a call, there is a 10% chance for
cancellation (in which case the car resumes its normal patrol) and a 30% chance that the
car is already responding to a previous call. When the police car arrives at the scene, there
is a 10% chance that the instigators will have fled (in which case the car returns back to
patrol) and a 40% chance that apprehenston is made immediately. Else, the officers will
search the area. If apprehension occurs, there is a 60% chance of transporting the suspects
to the police station, else they are released and the car returns to patrol. Express the prob-
abilistic activities of the police patrol in the form of a transition matrix.
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17.2

3. (Cyert and Associates, 1963) Bank1 offers loans which are either paid when due or are
delayed. If the payment on a loan is delayed more than 4 quarters (1 year), Bank1 con-
siders the loan a bad debt and writes it off. The following table provides a sample of
Bank1’s past experience with loans.

Loan amount  Quarters late Payment history

$10,000 0 $2000 paid, $3000 delayed by an extra quarter, $3000 delayed by 2
extra quarters, and the rest delayed 3 extra quarters.

$25,000 1 $4000 paid, $12,000 delayed by an extra quarter, $6000 delayed by
2 extra quarters, and the rest delayed by 3 extra quarters.

$50,000 2 $7500 paid, $15,000 delayed by an extra quarter, and the rest

delayed by 2 exira quarters.
$50,000 $42,000 paid and the rest delayed by an extra quarter.
$100,000 4 $50,000 paid.

[F%)]

Express Bank1’s loan situation as a Markov chain.

4. (Pliskin and Tell, 1981) Patients suffering from kidney failure can either get a transplant
or undergo periodic dialysis. During any one year, 30% undergo cadaveric transplants
and 10% receive living-donor kidneys. In the year following a transplant, 30% of the ca-
daveric transplants and 15% of living-donor recipients go back to dialysis. Death percent-
ages among the two groups are 20% and 10%, respectively. Of those in the dialysis pool,
10% die and of the ones who survive more than one year after a transplant, 5% die and
5% go back to dialysis. Represent the situation as a Markov chain.

ABSOLUTE AND n-STEP TRANSITION PROBABILITIES

Given the initial probabilities a® = {aj(-o)} of starting in state j and the transition matrix
P of a Markov chain, the absolute probabilities a(") = {af-")} of being in state j after n
transitions (n > 0) are computed as follows:

all) = 20p

2t2) = a(Up = a®pp = a(OIp?

a®® = al2lp = {Op2p = a0p3
Continuing in the same manner, we get

a(n) = a(O)P"" n = 11 2,___

The matrix P™ is known as the n-step transition matrix. From these calculations we can
see that

P = Pn—lP

or
P" = Pn_um,O <m<n

These are known as Chapman-Kolomogerov equations.
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e Example 17.2-1
;mn-
The following transition matrix applies to the gardener problem with fertilizer (Example 17.1-3):
. ¥ 1 2 3
1/30 .60 .10
— : P=2{.10 .60 .30
- 3\.05 .40 55
yed by
" The initial condition of the soil is good—that is a® = (1, 0, 0). Determine the absolute probabil-
ities of the three states of the system after 1, 8, and 16 gardening seasons.
30 60 .10\/30 60 .10 1550 5800 .2650
P2=].10 .60 30| .10 .60 .30]=].1050 .5400 .3550
lant 05 40 55/\05 40 .55 0825 4900 4275
s o 1550 5800 2650\ /.1550 .5800 2650
:Ca-
rc:m_ P =].1050 .5400 .3550 || .1050 .5400 .3550
200l \.0825 4900 .4275/\.0825 .4900 4275
and 10679 53295 36026
=1.10226 .52645 .37129
\.09950 52193 37857
10679 53295 36026\ /.10679 53295 36026
natrix PS = | 10226 .52645 37129 J{ 10226 .52645 37129
09950 52193 37857/ \.09950 52193 .37857
ftern
101753 525514 372733
=|.101702 .525435 372863
101669 525384 372863
101753 525514 372733\ /.101753 525514 372733
P =1 101702 .525435 .372863 || .101702 .525435 372863
101669 525384 372863/ \.101669 525384 372863
101659 52454 372881
= | 101659 52454 372881
ve can 101659 52454 372881
Thus,
30 .60 .10
al=(1 0 0)].10 60 .30(|=(30 .60 .1)
05 40 .55
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101753 525514 372733
a® = (1 0 0)|.101702 525435 372863 | = (101753 525514 372733)
101669 525384 372863

101659 52454 372881
a1 = (1 0 0).101659 52454 372881 | = (101659 52454 .372881)
101659 52454 372881

SHer o bt e Y AT “ﬂ‘-m" " i

The rows of P8 and the vector of absolute probabilities a(® are almost identical. The result
is more pronounced for P'6. It demonstrates that, as the number of transitions increases, the ab-
solute probabilities are independent of the initial a9, In this case the resulting probabilities are
known as the steady-state probabilities.

Remarks. The computations associated with Markov chains are quite tedious. Template
excelMarkovChains.xls provides a general easy-to-use spreadsheet for carrying out these
calculations (see Excel moment following Example 17.4-1).

PROBLEM SET 17.2A

L Consider Problem 1, Set 17.1a. Determine the probability that the professor will pur-

chase the current model in four years.
¥2. Consider Problem 2, Set 17.1a. If the police car is currently at a call scene, determine the
probability that an apprehension will take place in two patrols.

3. Consider Problem 3, Set 17.1a. Suppose that Bank1 currently has $500,000 worth of out-
standing loans. Of these, $100,000 are new, $50,000 are one quarter late, $150,000 are two
quarters late, $100,000 are three quarters late, and the rest are over four guarters late.
What would the picture of these loans be like after two cycles of loans?

4. Consider Problem 4, Set 17.1a.

(a) For a patient who is currently on dialysis, what is the probability of receiving a trans-
plant in two years?

(b} For a patient who is currently a more-than-one-year survivor, what is the probability
of surviving four more years?

17.3  CLASSIFICATION OF THE STATES IN A MARKOV CHAIN

The states of a Markov chain can be classified based on the transition probability p;; of P.

1. A state j is absorbing if it returns to itself with certainty in one transition—that s
pjj=1

2. A state j is transient if it can reach another state but cannot itself be reached back
from another state. Mathematically, this will happen if rth_r)r()nﬁ pg;') = (, for all i.

3. A state j is recurrent if the probability of being revisited from other states is 1.
This can happen if, and only if, the state is not transient.

4. A state j is periodic with period ¢ > 11f a return is possible only in ¢,2¢,3¢,. .-
steps. This means that pf,.}') = () whenever n is not divisible by ¢.
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17.3 Classification of the States in a Markov Chain 647

Based on the given definitions, a finite Markov chain cannot consist of all tran-
sient states because, by definition, the transient property requires entering other “trap-
ping” states, thus never revisiting the transient state. The “trapping” state need not be a
single absorbing state. For example, in the chain

o Cc O o
OO O
niom o
oS C

states 1 and 2 are transient because they cannot be reentered once the system is
“trapped” in states 3 and 4. States 3 and 4, which, in a sense, play the role of an absorb-
ing state, constitute a closed set. By definition, all the states of a closed set must
communicate, which means that it is possible to go from any state to every other state
in the set in one or more transitions—that is, plg]f') > Oforalli # jand n = 1. Notice
that states 3 and 4 can both be absorbing states if p;; = psy = 1. In such a case, each
state forms a closed set.

A closed Markov chain is said to be ergodic if all its states are recurrent and
aperiodic (not periodic). In this case, the absolute probabilities after n transitions,
al" = a®P" always converge uniquely to a limiting (steady-state) distribution as
n— 0o that is independent of the initial probabilities a'®, as will be shown in
Section 17.4.

Example 17.3-1 (Absorbing and Transient States)

Consider the gardener Markov chain with no fertilizer.

2 5 3
P=]0 5 5
0 0 1

States 1 and 2 are transient because they reach state 3 but can never be reached back, State 3
is absorbing because p;; = 1. These classifications can also be seen when lim pg’) =0is

— 00
computed. For example, "

0 0 1
pl® 1o 0 1
0 0 1

which shows that in the fong run, the probability of ever reentering transient state 1 or 2 is zero,
whereas the probability of being “trapped” in absorbing state 3 is certain.

Example 17.3-2 (Periodic States)

We can test the periodicity of a state by computing P” and observing the values of pg') for
n =123 4,.... These values will be positive only at the corresponding period of the state. For
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example, in the chain

0 6 4
P=(0 1 O
6 4 0
we have
24 96 0 0 904 .0960 0576 9424 0
pt={0 1 o {P=0 1 0 |[P'={ © 1 0 |
0 76 24 44 856 0 0 9424 0576
0 9769 .02304
pP=| 0 1 0
03456 96544 0
Continuing with n = 6,7,..., P" shows that p;; and ps; are positive for even values of n and

zero otherwise. This means that the period for states 1 and 3 1s 2.

PROBLEM SET 17.3A

1. Classify the states of the following Markov chains. If a state is periodic, determine its

period:
0 1 0O
*a) t 0 1
1 0
11
3 3 @ 0
0 0 1 O
b) | 11
3 03 3
0 0 0 1
0 1 0 0 0 O
0 5 5 0 0 0O
© 0 7 3 0 0 O
0 0 0 1 0 O
0 0 0 0 4 6
0O 0 0 0 2 8
d 0 9
d@i{7 3 0
2 7 1

A i\‘:
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STEADY-STATE PROBABILITIES AND MEAN RETURN TIMES
OF ERGODIC CHAINS

In an ergodic Markov chain, the steady-state probabilities are defined as

;= ,,“_?30":('”)’ i=0,1,2,...
These probabilities, which are independent of {a}ﬁ)}, can be determined from the
equations

o7 = 7wP

27"1’ =1
I

(One of the equations in = = 7P is redundant.) What = = &P says is that the prob-
abilities 7 remain unchanged after one transition, and for this reason they represent
the steady-state distribution.

A direct by-product of the steady-state probabilities is the determination of the
expected number of transitions before the systems returns to a state j for the first time.
This is known as the mean first return time or the mean recurrence time, and is com-
puted in an n-state Markov chain as

1
b
W

pijj = —J=12,....n

Example 17.4-1

To determine the steady-state probability distribution of the gardener problem with fertilizer
(Example 17.1-3), we have

3 6 1
(".'T[ ) ’iT3) = (7T1 my 71'3) 1 6 3
05 4 55

which yields the following set of equations:

7 = 3m + .lmy + 0575
Ty = 6w + .6my + 4,
73 = 1wy + 37, + 5573
m ot wtEs=1
Recalling that one (any one) of the first three equations is redundant, the solution is
;= 0.1017, 5 = 0.5254, and 73 = 0.3729. What these probabilities say is that, in the long run,

the soil condition approximately will be good 10% of the time, fair 52% of the time, and poor
37% of the time.
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The mean first return times are computed as

1

1 1
M1 — Eﬁ = 9.83,.&22 = .5_2§Z = 19, M33 = -5 — 268

3729

This means that, depending on the current state of the soil, it will take approximately 10 garden-
ing seasons for the soil to return to a good state, 2 seasons to return Lo a fair state, and 3 seasons
to return to a poor state. These results point to a more “bleak” than “promising” cutlook for the
soil condition under the proposed fertilizer program. A more aggressive program should im-
prove the picture. For example, consider the following transition matrix in which the probabiii-
ties of moving to a good state are higher than in the previous matrix:

35 6 05
P=) 3 6 .1
25 4 35

In this case, m; = 0.31, 7, = 0.58, and w3 = 0.11, which yelds uy = 32, up = 1.7, and
a3 = 8.9, a reversal of the “bleak” outlook given previously.

Excel Moment

Figure 17.1 shows the output of the gardener example using the general Excel template
excelMarkovChains.xls to compute n-step, absolute, and steady-state probabilities, and
mean return time for a Markov chain of any size. The steps are self-explanatory. In step
2a, you may override the default state codes (1,2, 3, ...) by a code of your choice.
These codes will be automatically updated everywhere else in the spreadsheet when
you execute step 4.

FIGURE 17.1
Excel Spreadsheet for Markov chain computations

Lol AT B T bl R G 7]
ks Markov Chains

2 Step 1: |Humber of states = ] L 3]Step 2a: |Initial probabilities:

73 |Step 2: | : : : Codes: 1] 2
A : : 1] 0; 0
5 | Step 3: |Humber of transitions{ ~ . .. 8]Step 2b:|Input Markov chain |
.6 |Step 4: : L 1 2 3
al ' 358 R 0.3 0.6 0.1
ED Output Results 2 0.1 0.6 0.3
9|  [hAbsolute! Steady Meanretur] 3| 005 04 055
0| Sstate | (B-step) state time Qutput {8-step} transition matrix
A1 1] 0.10175] 0.101695] 9.8333254 1 2 3l
42 2 0.525515; 0.5264241 1.9032248 1] 0.10175{ 0.5625614: 0.372733
13 3 037273 0.372882; 2.6818168 A 01017 0.525435] 0.372864
4 ! 3] 010167/ 0.525384] 0.372947

e wﬁm
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Example 17.4-2 (Cost Model)

: Consider the gardener problem with fertilizer (Example 17.1-3). Suppose that the cost of the fer-
p tilizer is $50 per bag and the garden needs two bags if the soil is good. The amount of fertilizer is
: increased by 25% if the soil is fair and 60% if the soil is poor. The gardener estimates the annual

den- yield to be worth $250 if no fertilizer is used and $420 if fertilizer is applied. Is it worthwhile to
'Sons use the fertilizer?
; the Using the steady state probabilities in Example 17.4-1, we get
im-
abiii-
Expected annual cost of fertilizer = 2 X $50 X 7 + (1.25 X 2) X $50 X =,
+ (1.60 X 2) X $50 X 5
= 100 X .1017 + 125 X .5254 + 160 X .3729
= §135.51
and - Increase in the annual value of the yield = $420 — $250 = $170
The results show that, on the average, the use of fertilizer nets 170 — 135.51 = $34.49. Hence
E the use of fertilizer is recommended.
plate
,and ; PROBLEM SET 17.4A
ste '
oicg *1. On a sunny Spring day, MiniGolf can gross $2000 in revenues. If the day is cloudy, rev-

vhen enues drop by 20%. A rainy day will reduce revenues by 80%. If today’s weather is
sunny, there is an 80% chance it will remain sunny tomorrow with no chance of rain. If it
- is cloudy, there is a 20% chance that tomorrow will be rainy and 30% chance it will be
sunny. Rain will continue through the next day with a probability of .8, but there is a 10%
chance it may be sunny.

(a) Determine the expected daily revenues for MiniGolf.

(b) Determine the average number of days the weather will not be sunny.

2. Joe loves to eat out in area restaurants. His favorite foods are Mexican, Italian, Chinese,
and Thai. On the average, Joe pays $10.00 for a Mexican meal, $15.00 for an Italian meal,
$9.00 for a Chinese meal, and $11.00 for a Thai meal. Joe’s eating habits are predictable:
There is a 70% chance that today’s meal is a repeat of yesterday’s, and equal probabilities

L of switching to one of the remaining three.

(a) How much does Joe pay on the average for his daily dinner?

— (b) How often does Joe eat Mexican food?

" 3. Some ex-cons spend the rest of their lives in one four of states: free, on trial, in jail, or on
probation. At the start of each year, statistics show that there is 50% chance that a free
ex-con will commit a new crime and go on trial. The judge may send the ex-con to jail
with probability .6 or grant probation with probability .4. Once in jail, 10% of ex-cons
will be set free for good behavior. Of those who are on probation, 10% commit new
crimes and are arraigned for new trials, 50% will go back to finish their sentence for vio-
lating probation orders, and 10% will be set free for lack of evidence. Taxpayers under-
- write the costs associated with the punishment of the ex-felons. It is estimated that a trial
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*5.

T

will cost about $5000, an average jail sentence will cost $20,000, and an average probation
period will cost $2000.

(a) Determine the expected cost per ex-con.
(b) How often does an ex-con return to jail? Go on trial? Get set free?
A store sells a special item whose daily demand can described by the following pdf:

Dailydemand,? 0 1 2 3
P{D} d 3 4 2

The store is comparing two ordering policies: (1) Order up to 3 units every 3 days if the
stock level is less than 2, else do not order. (2) Order 3 units every 3 days if the stock
level is zero, else do not order. The fixed ordering cost per shipment is $300 and the cost
of holding excess units per unit per day is $3. Immediate delivery is expected.

(a) Which policy should the store adopt to minimize the total expected daily cost of
ordering and holding?

(b) For the two policies, compare the average number of days between successive inven-
tory depletions.

There are three categories of income tax filers in the United States: those who never

evade taxes, those who sometimes do it, and those who always do it. An examination of

audited tax returns from one year to the next shows that of those who did not evade
taxes last year, 95% continue in the same category this year, 4% move to the “some-
times” category, and the remainder move to the “always” category. For those who some-
times evade taxes, 6% move to “never,” 90% stay the same, and 4% move to “always.”

As for the “always” evaders, the respective percentages are 0%, 10%., and 90%.

(a) Express the problem as a Markov chain.

(b) In the long run, what would be the percentages of “never,” “sometimes,” and
“always” tax categories?

(c) Statistics show that a taxpayer in the “sometimes” category evades taxes on about
$5000 per return and in the “always” category on about $12,000. Assuming an av-
erage income tax rate of 12% and a filers population of 70 million, determine the
annual reduction in collected taxes due to evasion.

Warehouzer owns a renewable forest land for growing pine trees. Trees can fall into one
of four categories depending on their age: baby (0-5 years), young {5-10 years), mature
(11-15 years), and old (more than 15 years). Ten percent of baby and young trees die be-
fore reaching the next age group. For mature and old trees, 50% are harvested and only
59 die. Because of the renewal nature of the operation, all harvested and dead tree are
replaced with new (baby) trees by the end of the next 5-year cycle.
(a) Express the forest dynamics as a Markov chain.
(b) If the forest land can hold a total of 500,000 trees, determine the long-run composi-
tion of the forest.
(¢) If a new tree is planted at the cost of §1 per tree and a harvested tree has 2 market
value of $20, determine the average annual income from the forest operation.
Population dynamics is impacted by the continual movement of people who are seeking
better quality of life or better employment. The city of Mobile has an inner city population,
a suburban population, and a surrounding rural population. The census taken in 10-year
intervals shows that 10% of the rural population move to the suburbs and 5% to the
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inner city. For the suburban population, 30% move to rural areas and 15% to the inner

city. Inner-city population would not move into suburbs, but 20% of them move to the

quiet rural life.

{a) Express the population dynamics as a Markov chain.

(b) If the greater Mobile area currently includes 20,000 rural residents, 100,000 subur-
banites, and 30,000 inner city inhabitants, what will the population distribution be in
10 years? In 20 years?

(¢) Determine the long-run population picture of Mobile.

A car rental agency has offices in Phoenix, Denver, Chicago, and Atlanta. The agency al-

lows one- and two-way rentals so that cars rented in one location may end up in another.

Statistics show that at the end of each week 70% of all rentals are two-way. As for the

one-way rentals: From Phoenix, 20% go to Denver, 60% to Chicago, and the rest goes to

Atlanta; from Denver, 40% go to Atlanta and 60% to Chicago; from Chicago, 50% go to

Atlanta and the rest to Denver; and from Atlanta, 80% go to Chicago, 10% to Denver,

and 10% to Phoenix.

(a) Express the situation as a Markov chain.

(b) If the agency starts the week with 100 cars in each location, what will the distribution
be like in two weeks?

(c} If each location is designed to handle a maximum of 110 cars, would there be a long-
run space availability problem in any of the locations?

(d) Determine the average number of weeks that elapse before a car is returned to its
originating location.

A boakstore keeps daily track of the inventory level of a2 popular book to restock it to a

level of 100 copies at the start of each day. The data for the last 30 days provide the fol-

lowing end-of-day inventory position: 1,2,0,3,2,1,0,0,3,0,1,1,3,2,3,3,2,1,0,2,0,1,3,

0,0,3,2,1,2,2.

(a) Represent the daily inventory as a Markov chain.

(b) Determine the steady-state probability that the bookstore will run out of books in
any one day.

(¢} Determine the expected daily inventory.

(d) Determine the average number of days between successive zero inventories.

In Problem 9, suppose that the daily demand can exceed supply, which gives rise to short-

age (negative inventory). The end-of-day inventory level for the past 30 days is given as:

1,2,0,-2,2,2,-1,-1,3,0,0,1,-1,—-2,3,3,-2, -1,0,2,0,—1,3,0,0,3,-1,1,2, -2

{a) Express the situation as a Markov chain.

(b) Determine the long-term probability of a surplus inventory in any one day.

(¢) Determine the long-term probability of a shortage inventory in any one day.

(d) Determine the long-term probability of the daily supply meeting the daily demand
exactly.

(e) If the holding cost per (end-of-day) surplus book is $.15 per day and the penalty
‘cost per shortage book is $4.00 per day, determine the expected inventory cost
per day.

A store starts a week with at least 3 PCs. The demand per week is estimated at O with

probability .15, 1 with probability .2, 2 with probability .35, 3 with probability .25, and 4

with probability .05. Unfilled demand is backlogged. The store’s policy is to place an
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13.

*14.

15.

order for delivery at the start of the following week whenever the inventory level drops

below 3 PCs. The new replenishment always brings the stock back to 5 PCs.

(a) Express the situation as a Markov chain.

(b) Suppose that the week starts with 4 PCs. Determine the probability that an order
will be placed at the end of two weeks.

(¢) Determine the long-run probability that no order will be placed in any week.

(d) If the fixed cost of placing an order is $200, the holding cost per PC per week is §5,
and the penalty cost per shortage PC per week is $20, determine the expected inven-
tory cost per week. .

Solve Problem 11 assuming that the order size, when placed, is exactly 5 pieces.

In Problem 12, suppose that the demand for the PCs is 0,1,2,3,4,or 5 with equal proba-

bilities. Further assume that the unfilled demand is not backlogged, but that the penalty

cost is still incurred.

(a) Express the situation as a Markov chain.

(b) Determine the long-run probability that a shortage will take place.

(¢) If the fixed cost of placing an order is $200, the holding cost per PC per week is $5,
and the penalty cost per shortage PC per week is $20, determine the expected order-
ing and inventory cost per week.

The federal government tries to boost small business activities by awarding annual grants

for projects. All bids are competitive, but the chance of receiving a grant is highest if the

owner has not received any during the last three years and lowest if awards were given in
each of the last three years. Specifically, the probability of getting a grant if none were
awarded in the last three years is .9. It reduces to .8 if one grant was awarded, .7 if two
grants were awarded, and only .5 if 3 were received.

(a) Express the situation as a Markov chain.

(b) Determine the expected number of awards per owner per year.

Jim Bob has a history of receiving many fines for driving violations. Unfortunately for

Jim Bob, modern technology can keep track of his previous fines. As soon as he has accu-

mulated 4 tickets, his driving license is revoked until he completes a new driver education

class, in which case he starts with a clean slate. Jim Bob is most reckless immediately after

completing the driver education class and he is invariably stopped by the police with a

50-50 chance of being fined. After each new fine, he tries to be more careful, which re-

duces the probability of a fine by .1.

(a) Express Jim Bob’s problem as Markov chain.

(b) What is the average number of times Jim Bob is stopped by police before his license
is revoked again?

(c) What is the probability that Jim Bob will lose his license?

(d) If each fine costs $100, how much, on the average, does Jim Bob pay between succes-
sive suspensions of his license?

FIRST PASSAGE TIME

In Section 17.4, we used the steady state probabilities to compute i, the mean first re-
turn time for state j. In this section, we are concerned with the determination of the
mean first passage time y;;, the expected number of transitions needed to reach state j
from state i for the first time. The calculations are rooted in the determination of the
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probability f;; of at least one passage from state i to state j as f; = >, fiF, where
) is the probability of a first passage from state { to state j in # transitions. An ex-
i is the probability of a first passage f t tate j in 7 transitions. A
pression for f ,(j‘) can be determined recursively from

n—1
pi = fim + Izlf,(f)p,(f’_k), n=12, ...

The transition matrix P = | p;| is assumed to have m states.

1. If f;; < 1, it is not certain that the system will ever pass from state i to state j and
Mij = OO.

2. If f;; = 1, the Markov chain is ergodic and the mean first passage time from state
i to state j is computed as

o0

Mij = 2 nff(}l)

n=1

A simpler way to determine the mean first passage time for all the states in an
m-transition matrix, P, is to use the following matrix-based formula:

"I«Lq‘” =({I- Nj)ﬁllu'- # 1
where

I = (m — 1)-identity matrix

Z
It

transition matrix P less its jth row and jth column of target state j

ja—
1l

(m — 1) column vector with all elements equal to 1

The matrix operation (I — N;)™1 essentially sums the columns of (I — N,)™.

Example 17.5-1

Consider the gardener Markov chain with fertilizers once again.

30 .60 .10
P=1.10 .60 .30
05 40 55

To demonstrate the computation of the first passage time to a specific state from all others,
consider the passage from states 2 and 3 (fair and poor) Lo state 1 (good). Thus, j = 1 and

{60 30 4 (4 =3\ (750 5.00)
N‘_(Ao .55)'(l No) "(—.4 .45) - \6.67 6.67
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Thus,

This means that, on the average, it will take 12.5 seasons to pass from fair to good soil and 13.34

Markov Chains

(1“'21) _ (7‘50 5.00)(1) _
et 6.67 6.67/\1

seasons to go from bad to good soil.

Similar calculations can be carried out to obtain u,; and u3; from (¥ — N;) and g3 and p,,

from (I — Nj), as shown below.

(12.50)
13.34

Excel Moment

The calculations of the mean first passage times can be carried out conveniently by
Excel template excelFirstPassTime.xls. Figure 17.2 shows the calculations associated
with Example 17.5-1. Step 2 of the spreadsheet automatically initializes the transition
matrix P to zero values per the size given in step 1. In step 2a, you may override the

FIGURE 17.2
Excel spreadsheet caleulations of first passage time of Example 17.5-1 (file excelFirstPassTime.xls)

T oA J.oB- 1 ¢ ] D
1 First Passage Times in Ergodic and Absorbing Markov Chains
2 Step 1. 1Number of states = | 3| Step 2a: ]You mey override codas in ROW 6
< P AT R T T R T ) 7] - -
A |Step 2 St ] Step 31§
5. ‘Matrix P:(Biank celi may resuit in "Type mismaich” compiier error}
6 1 2 3
T 03 oel 01
8 61 06 03
90 3 0.05¢ 0.4 0.55
104 (Matrix 1Pz D S
"l 1 2 I 4
12 o7 05 o1 _
13T a4l 3 ﬂ
14| T3 oos. 04 045 ;
15 | Step 4: Perform first passage time calculations below:
16 N L inv{l-N) Mu
17{i=1 2: 3 2 3 1
18 2l 04 0.3 2 7.5 5 2 12.5
19 3 -0 4! 0.45 3] 6.666667) 6.6666667 3] 13.33333
20 [ L E
21i=2 1; 3 1 3 2
L2 ] O A N | . 1.451613; 0.3225806 1774194
23 3 -0.05; 0.45) 3 0.161291 2.25B80645 2 419355
251i=3 ! 1! 2! . 1 2 3
26. 1] 0.7 -06] 1| 1.8181824 2.7272727 4.545455
Yig 2 0.1 04 2] 0.454545] 3.1818182 3.636364
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default state codes in row 6 with a code of your choice. The code will then be transferred
automatically throughout the spreadsheet. After you enter the transition probabilities,
step 3 creates the matrix I — P. Step 4 is carried out entirely by you using I —~ P as the
source for creating I — N; (j = 1, 2, and 3). You can do so by copying the entire I — P
and its state codes and pasting it in the target Jocation, and then using appropriate Excel
Cut and Paste operations to rid I — P of row j and column j. For example, to create
I — N,, first copy I — P and its state codes to the selected target location. Next, high-
light column 3 of the copied matrix, cut it, and paste it in column 2, thus eliminating col-
umn 2. Stmilarly, highlight row 3 of the resulting matrix, cut it,and then paste it in row 2,
thus eliminating row 2. The created I — N, automatically carries its correct state code.

Oncel — N;iscreated, the inverse, (I — Nj)'l, is computed in the target location.
The associated operations are demonstrated by inverting (I — Nj) in Figure 17.2:

1. Enter the formula =MINVERSE(B18:C19) in E18.

2. Highlight E18:F19, the area where the inverse will reside.
3. Press F2.

4. Press CTRL + SHIFT + ENTER.

The values of the first passage times from states 2 and 3 to state 1 are then com-
puted by summing the rows of the inverse—that is, by entering =SUM(E18:F18) in
H18 and then copying H18 into H19. After creating I — N fori = 2 and i = 3, the re-
maining calculations are automated by copying E18:F19 into E22:F23 and E26:F27,
and copying H18:H19 into H22:H23 and H26:H27.

PROBLEM SET 17.5A

*1. A mouse maze consists of the paths shown in Figure 17.3. Intersection 1 is the maze en-
trance and intersection 5 is the exit. At any intersection, the mouse has equal probabili-
ties of selecting any of the available paths. When the mouse reaches intersection 5, it will
be allowed to recirculate in the maze.

(a) Express the maze as a Markov chain.

(b) Determine (he probability that, starting at intersection 1, the mouse will reach the
exit after three trials.

(c¢) Dectermine the long-run probability that the mouse will locate the exit intersection.

(d) Determine the average number of trials needed to reach the exit point from inter-
section 1.

2 s FIGURE 17.3

Mouse maze for Problem 1, Set 17.5a
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2. In Problem 1, intuitively, if more options (routes) are added to the maze, will the average
number of trials needed to reach the exit point increase or decrease? Demonstrate the
answer by adding a route between intersections 3 and 4.

3. Jim and Joe start a game with five tokens, three for Jim and two for Joe. A coin is tossed
and if the outcome is heads, Jim gives Joe a token, ¢lse Jim gets a token from Joe. The
game ends when Jim or Joe has all the tokens. At this point, there is 30% chance that Jim
and Joe will continue to play the game, again starting with three tokens for Jim and twa
for Joe.

(a) Represent the game as a Markov chain.

(b) Determine the probability that Joe will win in three coin tosses. That Jim will win in
three coin tosses.

{¢) Determine the probability that a game will end in Jim's favor. Joe’s favor.

(d) Determine the average number of coin tosses needed before Jim wins. Joe wins.

4. An amateur gardener with training in botany is experimenting with scientific cross-
pollination of pink irises with red, orange, and white irises. Ilis annual experiments
show that pink can produce 60% pink and 40% white, red can produce 40% red, 50%
pink, and 10% orange, orange can produce 25% orange, 50% pink, and 25% white, and
white can produce 50% pink and 50% white.

(a) Express the gardener situation as a Markov chain.

(b) If the gardener started the cross-pollination with equal numbers of each type iris,
what would the distribution be like after 5 years? In the long run?

(¢} How many vears on the average would a red iris take to produce a white bloom? ;

*5. Customers tend to exhibit loyalty to product brands but may be persuaded through

clever marketing and advertising to switch brands. Consider the case of three brands: 4,

B, and C. Customer “unyielding” loyalty to a given brand is estimated at 75%, giving the

competitors only a 25% margin to realize a switch. Competitors launch their advertising

campaigns once a year. For brand A customers, the probabilities of switching to brands B 4

and C are .1 and .15, respectively. Customers of brand B are likely to switch to A and C

with probabilities .2 and .05, respectively. Brand C customers can switch to brands A and

B with equal probabilities.

(a) Express the situation as a Markov chain.

{b) In the long run, how much market share will each brand command?

() How long on the average will it take for a brand A customer to switch to brand B?
To brand C?
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17.6  ANALYSIS Of ABSORBING STATES

In the gardener problem without fertilizer the transition matrix is given as

2 5 3
P=|(0 5 5
0 0 1

States 1 and 2 (good and fair soil conditions) are transient and State 3 (poor soil
condition) is absorbing, because once in that state the system will remain there in-
definitely. A Markov chain may have more than one absorbing state. For example,
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an employee may remain employed with the same company until retirement or may
quit a few years earlier (two absorbing states). In these types of chains, we are interested
in determining the probability of reaching absorption and the expected number of
transitions to absorption given that the system starts in a specific transient state. For
example, i the gardener Markov chain given above, if the soil is currently good, we
will be interested in determining the average number of gardening seasons till the soil
becomes poor and also the probability associated with this transition.

The analysis of Markov chains with absorbing states can be carried out conve-
niently using matrices. First, the Markov chain is partitioned in the following manner:;

N A
0 I
‘The arrangement requires all the absorbing states to occupy the southeast corner
of the new matrix. For example, consider the following transition matrix:

1 2 3 4
1/2 3 4 1
210
P - I 0 0
315 3 0 2
430 0 0 1

The matrix P can be rearranged and partitioned as

= R N
S = N
—_ O N R N

In this case, we have

(GG ()

Given the definition of A and N and the unit column vector 1 of all 1 elements, it
can be shown that:

Expected time in state j starting in state i = element (i, j) of (I — N)™!
Expected time to absorption = (I — N)™1

Probability of absorption = (I — N)!A



st s et

660 Chapter 17 Markov Chains
Example 17.6-11
A product is processed on two sequential machines, [ and II. Inspection takes piace after a prod-
uct unit is completed on a machine. There is a 5% chance that the unit will be junked before in-
spection. After inspection, there is a 3% chance the unit will be junked and a 7% chance of its
being returned to the same machine for reworking. Else, a unit passing inspection on both ma- :
chines is good. ;
(a) For a part starting at machine I, determine the average number of visits to each station. ’;
(b) If a batch of 1000 units is started on machine I, how many good units will be pro- 3
duced? :
For the Markov chain, the production process has 6 states: start at I (s1), inspect after I (i1), 1
start at TI (s2), inspect after IT (;2), junk after inspection I or II (), and good after II (G). Units
entering J and G are terminal and hence J and G are absorbing states. The transition matrix is
given as
s1 il 2 2 J G
st/0 95 0 0 |05 O ;
ifeo 0o 9 0 |03 0
p_2[ 0 0 0 95705 0 5
200 0 07 0,03 9
J1o o o0 0|1 O ;
G\N0O 0 0 O 1 3
Thus, 3
s1 i1 520 12 J G :
sitfo0 95 ¢ O 05 0 2
|67 0 9 0 03 0 E
= A=
N 200 0 0 95V 05 0
2\0 0 .07 0O 03 9
Using the convenient spreadsheet calculations in excelEx17.6-1.xls (see Excel moment following
Example 17.5-1}, we get
1 -9 0 o\ 1.07 102 98 093
(1 - Ny = -.07 1 -9 0 ] 007 107 103 098
0 0 0 —.95 0 ¢ 107 1.02
0 0 -.07 1 0 0 0.07 1.07
107 1.02 98 093\/05 O 16 .84 :
007 107 103 098} 03 O 12 88 3
I-N)'A = = 3
( ) 0 0 107 102105 O 08 92
0 0 007 107/\.03 9 04 96

! Adapted from J. Shamblin and G. Stevens, Operations Research: A Fundamental Approach, McGraw-Hill,
New York, Chapter 4,1574.
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The top row of (I — N)™! gives the average number of visits in each station for a part start-
ing at machine 1. Specifically, machine 1 is visited 1.07 times, inspection I is visited 1.02 times,
machine II is visited .98 times, and inspection I is visited .93 times. The reason the number
of visits in machine I and inspection I is greater than 1 is because of rework and re-inspection.
On the other hand, the corresponding values for machine II are less than 1 because some parts
are junked before reaching machine II. Indeed, under perfect conditions (no parts junked and
no rework), the matrix (I — N)™! will show that each station is visited exactly once (try it by as-
signing a transition probability of 1 for all the stations). Of course, the duration of stay at each
station could differ. For example, if the processing times at machines I and II are 20 and 3@ minutes
and if the inspection times at [ and II are 5 and 7 minutes, then a part starting at machine 1 will
be processed (i.e., either junked or completed) in 1.07 X 20 + 1.02 X 5 + .98 X 30 + .93 X
7 = 62.41 minutes.

To determine the number of completed parts in a starting batch of 1000 pieces, we can see from
the top row of (I — N) ™A that

Probability of a piece being junked = .16
Probability of a piece being completed = .84

This means that 1600 X .84 = 840 pieces will be completed in a starting batch of 1000,

PROBLEM SET 17.6A

1. In Example 17.6-1, suppose that the labor cost for machines I and IT is $20 per hour and
that for inspection is only $18 per hour. Further assume that it takes 30 minutes and 20
minutes to process a piece on machines I and H, respectively. The inspection time at each
of the two stations is 10 minutes. Determine the labor cost associated with a completed
(good) piece.

*2. When I borrow a book from the city library, I usually try to return it after one week. De-
pending on the length of the book and my free time, there is a 30% chance that I may
keep it for another week. If | have had the book for two weeks, there is a 10% chance
that I’ll keep it for an additional week. Under no condition do I keep it for more than
three weeks.

(a) Express the situation as a Markov chain.
(b) Determine the average number of weeks I keep a book before returning it to the
library.
3. In Casino del Rio, a gambler can bet in whole dollars. Each bet will either gain $1 with

probability .4 or lose §1 with probability .6. Starting with three dollars, the gambler wiil
quit if all money is lost or the accumulation is doubled.

{a) Express the problem as a Markov chain.
(b) Determine the average number of bets until the game ends.
(¢) Determine the probability of ending the game with $6. Of losing all $3.

4. Jim must make five years worth of progress to complete his doctorate degree at ABC
University. However, he enjoys the life of a student and is in no hurry to finish his degree.
In any academic year there is a 50% chance he may take the year off and a 50% chance
of his pursuing the degree full time. After completing three academic years, there is a
30% chance that Jim may “bail out” and simply get a master’s degree, a 20% chance of
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*8.

his taking the next year off but continuing in the Ph.D. program, and 50% chance of his

attending school full time toward his doctorate.

(a) Express Jim’s situation as a Markov chain.

(b) Determine the expected number of academic years before Jim’s student life comes
to an end.

(¢) Determine the probability that Jim wili end his academic journey with only a mas-
ter’s degree.

(d) If Jim’s fellowship pays an annual stipend of $15,000 (but only when he attends
school), how much will he be paid before ending up with a degree?

An employee who is now 55 years old plans to retire at the age of 62 but does not rule

out the possibility of quitting earlier. At the end of each year, he weighs his options (and

state of mind regarding work). The probability of quitting after one year is only .1 but

seems to increase by approximately .01 with each additional year.

(a) Express the problem as a Markov chain.

(b) What is the probability that the employee stay with the company until planned re-
tirement at age 627

() Atage 57, what is the probability the employee will call it quits?

(d) At age 58, what is the expected number of years before the employee is off the payroll?

. In Problem 3, Set 17.1a,

(a) Determine the expected number of quarters until a debt is either repaid or lost as
bad debt.

(b) Determine the probability that a new loan will be written off as bad debt. Repaid in full.

(¢) If a loan is six months old, determine the number of quarters until its status is settled.

In a men’s singles tennis tournament, Andre and John are playing a match for the cham-

pionship. The match is won when either player wins three out of five sets. Statistics show

that there is 60% chance that Andre will win any one set.

(a) Express the match as a Markov chain.

(b) On the average, how long will the match last and what is the probability that Andre
will win the championship?

(c) If the score is 1 set to 2, John’s favor, what is the probability that Andre will win?

(d) In Part (c), determine the average number of sets till the match ends and interpret
the result.

Students at U of A have expressed dissatisfaction with the fast pace at which the math

department is teaching the one-semester Cal I. To cope with this problem, the math de-

partment is now offering Cal I in 4 modules. Students will set their individual pace for

each module and, when ready, will take a test that will elevate them to the next module.

The tests are given once every 4 weeks, so that a diligent student can complete all 4 mod-

ules in one semester. After a couple of years with this self-paced program, it is observed

that for the first module 20% of the students do not complete it on time. The percentages

for modules 2 through 4 are 22%,25%, and 30%, respectively.

(a) Express the problem as a Markov chain. -

(b) On the average, would a student starting with module 1 at the beginning of the current
semester be able to take Cal II the next semester (Cal I is a prerequisite for Cal II)?

() Would a student who has completed only one module last semester be able to finish
Cal 1 by the end of the current semester?

(d) Would you recommend that the use of the module idea be extended to other basic
math classes? Explain.
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At U of A, promotion from assistant to associate professor requires the equivalent of five
years of seniority. Performance reviews are conducted once a year and the candidate is
given either an average rating, a good rating, or an excellent rating. An average rating is
the same as probation and the candidate gains no seniority toward promotion. A good
rating is equivalent to gaining one year of sentorily, and an excellent rating adds two
years of seniority. Statistics show that in any year 10% of the candidates are rated aver-
age, 70% are rated good, and the rest are rated excellent.

{a) Express the problem as a Markov chain.

(b) Determine the average number of years until a new assistant professor is promoted.

(Pfifer and Carraway, 2000) A company targets its customers through direct mail adver-

tising. During the first year, the probability that the customer will make a purchase is .5,

which reduces to .4 in year 2, .3 in year 3, and .2 in year 4. If no purchases are made in

four consecutive years, the customer is deleted from the mailing list. Making a purchase

resets the count back to zero.

(a) Express the situation as a Markov chain.

(b) Determine the expected number of years a new customer will be on the mailing list.

(c) If a customer has not made a purchase in two years, determine the expected number
of years on the mailing list.

An NC machine is designed to operate properly with power voltage setting between 108

and 112 volts. If the voltage falls outside this range, the machine will stop. The power reg-

ulator for the machine can detect variations in increrments of one volt. Experience shows

that change in voltage take place once every 15 minutes and that within the admissible

range (118 to 112 volts), voltage can go up by one volt, stay the same, or go down by one

volt, all with equal probabilities.

(a) Express the situation as a Markov chain.

(b) Determine the probability that the machine will stop because the voltage is low. High.

() What should be the ideal voltage setting that will render the longest working dura-
tion for the machine?

Consider Probiem 4, Set 17.1a, dealing with patients suffering from kidney failure. Deter-

mine the following measures:

(a) The expected number of years a patient stays on dialysis.

(b) The longevity of a patient who starts on dialysis.

{c) The life expectancy of a patient who survives one year or longer after a transplant.

(d) The expected number of years before an at-least-one-year transplant survivor goes
back to dialysis or dies.

(e) The quality of life for those who survive a year or more after a transplant (presum-
ably, spending fewer years on dialysis signifies better quality of life).
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